Лекция линии второго порядка. Лекция линии второго порядка Почему получило название линия первого порядка

Кривыми второго порядка на плоскости называются линии, определяемые уравнениями, в которых переменные координаты x и y содержатся во второй степени. К ним относятся эллипс, гипербола и парабола.

Общий вид уравнения кривой второго порядка следующий:

где A, B, C, D, E, F - числа и хотя бы один из коэффициентов A, B, C не равен нулю.

При решении задач с кривыми второго порядка чаще всего рассматриваются канонические уравнения эллипса, гиперболы и параболы. К ним легко перейти от общих уравнений, этому будет посвящён пример 1 задач с эллипсами.

Эллипс, заданный каноническим уравнением

Определение эллипса. Эллипсом называется множество всех точек плоскости, таких, для которых сумма расстояний до точек, называемых фокусами, есть величина постоянная и бОльшая, чем расстояние между фокусами.

Фокусы обозначены как и на рисунке ниже.

Каноническое уравнение эллипса имеет вид:

где a и b (a > b ) - длины полуосей, т. е. половины длин отрезков, отсекаемых эллипсом на осях координат.

Прямая, проходящая через фокусы эллипса, является его осью симметрии. Другой осью симметрии эллипса является прямая, проходящая через середину отрезка перпендикулярно этому отрезку. Точка О пересечения этих прямых служит центром симметрии эллипса или просто центром эллипса.

Ось абсцисс эллипс пересекает в точках (a , О ) и (- a , О ), а ось ординат - в точках (b , О ) и (- b , О ). Эти четыре точки называются вершинами эллипса. Отрезок между вершинами эллипса на оси абсцисс называется его большой осью, а на оси ординат - малой осью. Их отрезки от вершины до центра эллипса называются полуосями.

Если a = b , то уравнение эллипса принимает вид . Это уравнение окружности радиуса a , а окружность - частный случай эллипса. Эллипс можно получить из окружности радиуса a , если сжать её в a /b раз вдоль оси Oy .

Пример 1. Проверить, является ли линия, заданная общим уравнением , эллипсом.

Решение. Производим преобразования общего уравнения. Применяем перенос свободного члена в правую часть, почленное деление уравнения на одно и то же число и сокращение дробей:

Ответ. Полученное в результате преобразований уравнение является каноническим уравнением эллипса. Следовательно, данная линия - эллипс.

Пример 2. Составить каноническое уравнение эллипса, если его полуоси соответственно равны 5 и 4.

Решение. Смотрим на формулу канонического уравения эллипса и подставляем: бОльшая полуось - это a = 5 , меньшая полуось - это b = 4 . Получаем каноническое уравнение эллипса:

Точки и , обозначенные зелёным на большей оси, где

называются фокусами .

называется эксцентриситетом эллипса.

Отношение b /a характеризует "сплюснутость" эллипса. Чем меньше это отношение, тем сильнее эллипс вытянут вдоль большой оси. Однако степень вытянутости эллипса чаще принято выражать через эксцентриситет, формула которого приведена выше. Для разных эллипсов эксцентриситет меняется в пределах от 0 до 1, оставаясь всегда меньше единицы.

Пример 3. Составить каноническое уравнение эллипса, если расстояние между фокусами равно 8 и бОльшая ось равна 10.

Решение. Делаем несложные умозаключения:

Если бОльшая ось равна 10, то её половина, т. е. полуось a = 5 ,

Если расстояние между фокусами равно 8, то число c из координат фокусов равно 4.

Подставляем и вычисляем:

Результат - каноническое уравнение эллипса:

Пример 4. Составить каноническое уравнение эллипса, если его бОльшая ось равна 26 и эксцентриситет .

Решение. Как следует и из размера большей оси, и из уравнения эксцентриситета, бОльшая полуось эллипса a = 13 . Из уравнения эсцентриситета выражаем число c , нужное для вычисления длины меньшей полуоси:

.

Вычисляем квадрат длины меньшей полуоси:

Составляем каноническое уравнение эллипса:

Пример 5. Определить фокусы эллипса, заданного каноническим уравнением .

Решение. Следует найти число c , определяющее первые координаты фокусов эллипса:

.

Получаем фокусы эллипса:

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) расстояние между фокусами 30, а большая ось 34

2) малая ось 24, а один из фокусов находится в точке (-5; 0)

3) эксцентриситет , а один из фокусов находится в точке (6; 0)

Продолжаем решать задачи на эллипс вместе

Если - произвольная точка эллипса (на чертеже обозначена зелёным в верхней правой части эллипса) и - расстояния до этой точки от фокусов , то формулы для расстояний - следующие:

Для каждой точки, принадлежащей эллипсу, сумма расстояний от фокусов есть величина постоянная, равная 2a .

Прямые, определяемые уравнениями

называются директрисами эллипса (на чертеже - красные линии по краям).

Из двух вышеприведённых уравнений следует, что для любой точки эллипса

,

где и - расстояния этой точки до директрис и .

Пример 7. Дан эллипс . Составить уравнение его директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет эллипса, т. е. . Все данные для этого есть. Вычисляем:

.

Получаем уравнение директрис эллипса:

Пример 8. Составить каноническое уравнение эллипса, если его фокусами являются точки , а директрисами являются прямые .

11.1. Основные понятия

Рассмотрим линии, определяемые уравнениями второй степени относительно текущих координат

Коэффициенты уравнения - действительные числа, но по крайней мере одно из чисел А, В или С отлично от нуля. Такие линии называются линиями (кривыми) второго порядка. Ниже будет установлено, что уравнение (11.1) определяет на плоскости окружность, эллипс, гиперболу или параболу. Прежде, чем переходить к этому утверждению, изучим свойства перечисленных кривых.

11.2. Окружность

Простейшей кривой второго порядка является окружность. Напомним, что окружностью радиуса R с центром в точке называется множе­ство всех точек Μ плоскости, удовлетворяющих условию . Пусть точка в прямоугольной системе координат имеет координаты x 0 , y 0 а - произвольная точка окружности (см. рис. 48).

Тогда из условия получаем уравнение

(11.2)

Уравнению (11.2) удовлетворяют координаты любой точки данной окружности и не удовлетворяют координаты никакой точки, не лежащей на окружности.

Уравнение (11.2) называется каноническим уравнением окружности

В частности, полагая и , получим уравнение окружности с центром в начале координат .

Уравнение окружности (11.2) после несложных преобразований примет вид . При сравнении этого уравнения с общим уравнением (11.1) кривой второго порядка легко заметить, что для уравнения окружности выполнены два условия:

1) коэффициенты при x 2 и у 2 равны между собой;

2) отсутствует член, содержащий произведение xу текущих координат.

Рассмотрим обратную задачу. Положив в уравнении (11.1) значения и , получим

Преобразуем это уравнение:

(11.4)

Отсюда следует, что уравнение (11.3) определяет окружность при условии . Ее центр находится в точке , а радиус

.

Если же , то уравнение (11.3) имеет вид

.

Ему удовлетворяют координаты единственой точки . В этом случае говорят: “окружность выродилась в точку” (имеет нулевой радиус).

Если , то уравнение (11.4), а следовательно, и равносильное уравнение (11.3), не определят никакой линии, так как правая часть уравнения (11.4) отрицательна, а левая – не отрицательная (говорять: “окружность мнимая”).

11.3. Эллипс

Каноническое уравнение эллипса

Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами , есть величина постоянная, большая, чем расстояние между фокусами.

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2c , а сумму расстояний от произ­вольной точки эллипса до фокусов - через 2a (см. рис. 49). По определению 2a > 2c , т. е. a > c .

Для вывода уравнения эллипса выберем систему координат так, чтобы фокусы F 1 и F 2 лежали на оси , а начало координат совпадало с серединой отрезка F 1 F 2 . Тогда фокусы будут иметь следующие координаты: и .

Пусть - произвольная точка эллипса. Тогда, согласно определению эллипса, , т. е.

Это, по сути, и есть уравнение эллипса.

Преобразуем уравнение (11.5) к более простому виду следующим образом:

Так как a >с , то . Положим

(11.6)

Тогда последнее уравнение примет вид или

(11.7)

Можно доказать, что уравнение (11.7) равносильно исходному уравнению. Оно называется каноническимуравнением эллипса .

Эллипс - кривая второго порядка.

Исследование формы эллипса по его уравнению

Установим форму эллипса, пользуясь его каноническим уравнением.

1. Уравнение (11.7) содержит х и у только в четных степенях, поэтому если точка принадлежит эллипсу, то ему также принадлежат точки ,,. Отсюда следует, что эллипс симметричен относительно осей и , а также относительно точки , которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат. Положив , находим две точки и , в которых ось пересекает эллипс (см. рис. 50). Положив в уравнении (11.7) , находим точки пересечения эллипса с осью : и . Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса . Отрезки A 1 A 2 и B 1 B 2 , а также их длины 2a и 2b называются соответственно большой и малой осями эллипса. Числа a и b называются соответственно боль­шой и малой полуосями эллипса.

3. Из уравнения (11.7) следует, что каждое слагаемое в левой части не превосходит единицы, т.е. имеют место неравенства и или и . Следовательно, все точки эллипса.лежаї внутри прямоугольника, образованного прямыми .

4. В уравнении (11.7) сумма неотрицательных слагаемых и равна единице. Следовательно, при возрастании одного слагаемого другое будет уменьшаться, т. е. если возрастает, то уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму, изображенную на рис. 50 (овальная замкнутая кривая).

Дополнительные сведения об эллипсе

Форма эллипса зависит от отношения . При эллипс превращается в окружность, уравнение эллипса (11.7) принимает вид . В качестве характеристики формы эллипса чаще пользуются отношением . Отношение половины расстояния между фокусами к большой полуоси эллипса называется эксцентриситетом эллипса и o6oзначается буквой ε («эпсилон»):

причем 0<ε< 1, так как 0<с<а. С учетом равенства (11.6) формулу (11.8) можно переписать в виде

Отсюда видно, что чем меньше эксцентриситет эллипса, тем эллипс будет менее сплющенным; если положить ε = 0, то эллипс превращается в окружность.

Пусть М(х;у) -- произвольная точка эллипса с фокусами F 1 и F 2 (см. рис. 51). Длины отрезков F 1 M=r 1 и F 2 M = r 2 называются фокальными радиусами точ­ки Μ. Очевидно,

Имеют место формулы

Прямые называются

Теорема 11.1. Если - расстояние от произвольной точки эллипса до какого-нибудь фокуса, d - расстояние от этой же точки до соответствующей этому фокусу директрисы, то отношение есть постоянная величина, равная эксцентриситету эллипса:

Из равенства (11.6) следует, что . Если же , то уравнение (11.7) определяет эллипс, большая ось которого лежит на оси Оу, а малая ось - на оси Ох (см. рис. 52). Фокусы такого эллипса находятся в точках и , где .

11.4. Гипербола

Каноническое уравнение гиперболы

Гиперболой называется множество всех точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами , есть величина постоянная, меньшая, чем расстояние между фокусами.

Обозначим фокусы через F 1 и F 2 расстояние между ними через , а модуль разности расстоя­ний от каждой точки гиперболы до фокусов через 2a . По определению 2a < , т. е. a < c .

Для вывода уравнения гиперболы выберем си­стему координат так, чтобы фокусы F 1 и F 2 лежали на оси , а начало координат совпало с серединой отрезка F 1 F 2 (см. рис. 53). Тогда фокусы будут иметь координаты и

Пусть - произвольная точка гиперболы. Тогда согласно опре­делению гиперболы или , т.е.. После упрощений, как это было сделано при выводе уравнения эллипса, получим каноническое уравнение гиперболы

(11.9)

(11.10)

Гипербола есть линия второго порядка.

Исследование формы гиперболы по ее уравнению

Установим форму гиперболы, пользуясь ее каконическим уравнением.

1. Уравнение (11.9) содержит x и у только в четных степенях. Сле­довательно, гипербола симметрична относительно осей и , а также относительно точки , которую называют центром гиперболы.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (11.9), находим две точки пересечения гиперболы с осью : и . Положив в (11.9), получаем , чего быть не может. Следовательно, гипербола ось Оу не пересекает.

Точки и называются вершинами гиперболы, а отрезок

действительной осью , отрезок - действительной полуосью гиперболы.

Отрезок , соединяющий точки и называется мнимой осью , число b - мнимой полуосью . Прямоугольник со сторонами 2a и 2b называется основным прямоугольником гиперболы .

3. Из уравнения (11.9) следует, что уменьшаемое не меньше единицы т. е. что или . Это означает, что точки гиперболы расположены справа от прямой (правая ветвь гиперболы) и слева от прямой (левая ветвь гиперболы).

4. Из уравнения (11.9) гиперболы видно, что когда возрастает, то и воз­растает. Это следует из того, что разность сохраняет постоянное значение, равное единице.

Из сказанного следует, что гипербола имеет форму, изображенную на рисунке 54 (кривая, состоящая из двух неограниченных ветвей).

Асимптоты гиперболы

Прямая L называется асимптотой неограниченной кривой K, если расстояние d от точки M кривой K до этой прямой стремится к ну­лю при неограниченном удалении точки M вдоль кривой K от начала координат. На рисунке 55 приведена иллюстрация понятия асимптоты: прямая L является асимптотой для кривой К.

Покажем, что гипербола имеет две асимптоты:

(11.11)

Так как прямые (11.11) и гипербола (11.9) симметричны относительно координатных осей, то достаточно рассмотреть только те точки указанных линий, которые расположены в первой четверти.

Возьмем на прямой точку N имеющей ту же абсциссу х, что и точка на гиперболе (см.рис. 56), и найдем разность ΜΝ между ордина­тами прямой и ветви гиперболы:

Как видно, по мере возрастания х знаменатель дроби увеличивается; числитель - есть постоянная величина. Стало быть, длина отрезка ΜΝ стремится к нулю. Так как ΜΝ больше расстояния d от точки Μ до прямой, то d и подавно стремится к ну­лю. Итак, прямые являются асимптотами гиперболы (11.9).

При построении гиперболы (11.9) целесообразно сначала построить ос­новной прямоугольник гиперболы (см. рис. 57), провести прямые, проходящие через противоположные вершины этого прямоугольника, - асимптоты гиперболы и отметить вершины и , гиперболы.

Уравнение равносторонней гиперболы.

асимптотами которой служат оси координат

Гипербола (11.9) называется равносторонней, если ее полуоси равны (). Ее каноническое уравнение

(11.12)

Асимптоты равносторонней гиперболы имеют уравнения и и, следовательно, являются биссектрисами координатных углов.

Рассмотрим уравнение этой гиперболы в новой си­стеме координат (см. рис. 58), полученной из старой поворотом осей координат на угол . Используем формулы поворота осей координат:

Подставляем значения х и у в уравнение (11.12):

Уравнение равносторонней гиперболы, для которой оси Ох и Оу являются асимптотами, будет иметь вид .

Дополнительные сведения о гиперболе

Эксцентриситетом гиперболы (11.9) называется отношение расстояния между фокусами к величине действительной оси гиперболы, обозначается ε:

Так как для гиперболы , то эксцентриситет гиперболы больше единицы: . Эксцентриситет характеризует форму гиперболы. Дей­ствительно, из равенства (11.10) следует, что т.е. и .

Отсюда видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение - ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен . Действительно,

Фокальные радиусы и для то­чек правой ветви гиперболы имеют вид и , а для левой - и .

Прямые - называются директрисами гиперболы. Так как для гиперболы ε > 1, то . Это значит, что правая директриса расположена между центром и правой вершиной гиперболы, левая - между центром и левой вершиной.

Директрисы гиперболы имеют то же свойство , что и директрисы эллипса.

Кривая, определяемая уравнением также есть гипербола, действительная ось 2b которой расположена на оси Оу, а мнимая ось 2a - на оси Ох. На рисунке 59 она изображена пунктиром.

Очевидно, что гиперболы и имеют общие асимптоты. Такие гиперболы называются сопряженными.

11.5. Парабола

Каноническое уравнение параболы

Параболой называется множество всех точек плоскости, каждая из которых одинаково удалена от данной точки, называемой фокусом, и данной прямой, называемой директрисой. Расстояние от фокуса F до директрисы называется параметром параболы и обозначается через p (p > 0).

Для вывода уравнения параболы выберем систему координат Оху так, чтобы ось Ох проходила через фокус F перпендикулярно директрисе в направлении от директрисы к F, а начало координат О расположим посередине между фокусом и директри­сой (см. рис. 60). В выбранной системе фокус F имеет координаты , а уравнение директрисы имеет вид , или .

1. В уравнении (11.13) переменная у входит в четной степени, значит, парабола симметрична относительно оси Ох; ось Ох является осью сим­метрии параболы.

2. Так как ρ > 0, то из (11.13) следует, что . Следовательно, парабола рас­положена справа от оси Оу.

3. При имеем у = 0. Следователь­но, парабола проходит через начало коор­динат.

4. При неограниченном возрастании x модуль у также неограниченно возраста­ет. Парабола имеет вид (форму), изображенный на рисунке 61. Точ­ка О(0; 0) называется вершиной параболы, отрезок FM = r называется фокальным радиусом точки М.

Уравнения , , (p>0 ) также определяют параболы, они изображены на рисунке 62

Нетрудно показать, что график квадратного трехчлена , где , B и С любые действительные числа, представляет собой параболу в смысле приведенного выше ее определения.

11.6. Общее уравнение линий второго порядка

Уравнения кривых второго порядка с осями симметрии, параллельными координатным осям

Найдем сначала уравнение эллипса с центром в точке , оси симметрии которого параллельны координатным осям Ох и Оу и полуоси соответственно равны a и b . Поместим в центре эллипса O 1 начало новой системы координат , оси которой и полуосями a и b (см. рис. 64):

И, наконец, параболы, изображенные на рисунке 65, имеют соответству­ющие уравнения.

Уравнение

Уравнения эллипса, гиперболы, параболы и уравнение окружности после преобразований (раскрыть скобки, перенести все члены уравнения в одну сторону, привести подобные члены, ввести новые обозначения для коэффициентов) можно записать с помощью единого уравнения вида

где коэффициенты А и С не равны нулю одновременно.

Возникает вопрос: всякое ли уравнение вида (11.14) определяет одну из кривых (окружность, эллипс, гипербола, парабола) второго порядка? Ответ дает следующая теорема.

Теорема 11.2 . Уравнение (11.14) всегда определяет: либо окружность (при А = С), либо эллипс (при А · С > 0), либо гиперболу (при А · С < 0), либо параболу (при А×С= 0). При этом возможны случаи вырождения: для эллипса (окружности) - в точку или мнимый эллипс (окружность), для гиперболы - в пару пересекающихся прямых, для параболы - в пару параллельных прямых.

Общее уравнение второго порядка

Рассмотрим теперь общее уравнение второй степени с двумя неизвест­ными:

Оно отличается от уравнения (11.14) наличием члена с произведением координат (B¹ 0). Можно, путем поворота координатных осей на угол a , преобразовать это уравнение, чтобы в нем член с произведением координат отсутствовал.

Используя формулы поворота осей

выразим старые координаты через новые:

Выберем угол a так, чтобы коэффициент при х" · у" обратился в нуль, т. е. чтобы выполнялось равенство

Таким образом, при повороте осей на угол а, удовлетворяющий условию (11.17), уравнение (11.15) сводится к уравнению (11.14).

Вывод : общее уравнение второго порядка (11.15) определяет на плоскости (если не считать случаев вырождения и распадения) следующие кривые: окружность, эллипс, гиперболу, параболу.

Замечание: Если А = С, то уравнение (11.17) теряет смысл. В этом случае cos2α = 0 (см. (11.16)), тогда 2α = 90°, т. е. α = 45°. Итак, при А = С систему координат следует повернуть на 45°.

1. Линии второго порядка на евклидовой плоскости.

2. Инварианты уравнений линий второго порядка.

3. Определение вида линий второго порядка по инвариантам ее уравнения.

4. Линии второго порядка на аффинной плоскости. Теорема единственности.

5. Центры линий второго порядка.

6. Асимптоты и диаметры линий второго порядка.

7. Привидение уравнений линий второго порядка к простейшему.

8. Главные направления и диаметры линий второго порядка.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


1. Линии второго порядка в евклидовой плоскости.

Определение:

Евклидова плоскость – это пространство размерности 2,

(двумерное вещественное пространство).

Линии второго порядка представляют собой линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.

Эти линии часто встречаются в различных вопросах естествознания. Например, движение материальной точки под воздействием центрального поля силы тяжести проис­ходит по одной из этих линий.

Если секущая плоскость пересекает все прямолинейные образующие одной полости конуса, то в сечении получится ли­ния, называемая эллипсом (рис. 1.1,а). Если секущая плоскость пересекает образующие обеих полостей конуса, то в сечении по­лучится линия, называемая гиперболой (рис. 1.1,6). И, наконец, если секущая плоскость параллельна одной из образующих ко­нуса (на 1.1, в - это образующая АВ), то в сечении получится линия, называемая параболой. Рис. 1.1 дает наглядное представление о форме рассматриваемых линий.

Рисунок 1.1

Общее уравнение линии второго порядка имеет следующий вид:

(1)

(1*)

Эллипсом называется множесво точек плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 этой плоскости, называемых фо­кусами, есть величина постоянная.

При этом не исключается совпадение фокусов эллипса. Оче­видно, если фокусы совпадают, то эллипс представляет собой окружность.

Для вывода канонического уравнения эллипса выберем на­чало О декартовой системы координат в середине отрезка F 1 F 2 , а оси Ох и Оу направим так, как указано на рис. 1.2 (если фокусы F 1 и F 2 совпадают, то О совпадает с F 1 и F 2 , а за ось Ох можно взять лю­бую ось, проходящую через О).

Пусть длина отрезка F 1 F 2 F 1 и F 2 соответствен­но имеют координаты (-с, 0) и (с, 0). Обозначим через постоян­ную, о которой говорится в опреде­лении эллипса. Очевидно, 2а > 2с, т. е. а > с (Если М - точка эллипса (см. рис. 1.2), то | MF ] |+ | MF 2 | = 2 a , а так как сумма двух сторон MF 1 и MF 2 треугольника MF 1 F 2 больше третьей стороны F 1 F 2 = 2c, то 2а > 2с. Случай 2а = 2с естественно исключить, так как тогда точка М располагается на отрезке F 1 F 2 и эллипс вырождается в отрезок.).

Пусть М (х, у) (рис. 1.2). Обозначим через r 1 и r 2 расстояния от точки М до точек F 1 и F 2 соответственно. Со­гласно определению эллипса равенство

r 1 + r 2 = 2а (1.1)

является необходимым и достаточным условием расположения точки М (х, у) на данном эллипсе.

Используя формулу расстояния между двумя точками, получим

(1.2)

Из (1.1) и (1.2) вытекает, что соотношение

(1.3)

представляет собой необходимое и достаточное условие распо­ложения точки М с координатами х и у на данном эллипсе. По­этому соотношение (1.3) можно рассматривать как уравнение эллипса. Путем стандартного приема «уничтожения радикалов» это уравнение приводится к виду

(1.4) (1.5)

Так как уравнение (1.4) представляет собой алгебраическое следствие уравнения эллипса (1.3), то координаты х и у любой точки М эллипса будут удовлетворять и уравнению (1.4). По­скольку при алгебраических преобразованиях, связанных с изба­влением от радикалов, могли появиться «лишние корни», мы дол­жны убедиться в том, что любая точка М, координаты которой удовлетворяют уравнению (1.4), располагается на данном эллипсе. Для этого, очевидно, достаточно доказать, что величи­ны r 1 и r 2 для каждой точки удовлетворяют соотношению (1.1). Итак, пусть координаты х и у точки М удовлетворяют уравне­нию (1.4). Подставляя значение у 2 из (1.4) в правую часть вы­ражения (1.2) для г 1 после несложных преобразований найдем, чтоСовершенно аналогично найдем, что (1.6)

т. е.r 1 + r 2 = 2а, и поэтому точка М располагается на эллипсе. Уравнение (1.4) называется каноническим уравнением эллипса. Величины а и b называются соответственно большой и малой полуосями эллипса (наименование «большая» и «малая» объяс­няется тем, что а>Ь).

Замечание . Если полуоси эллипса а и b равны, то эллипс представляет собой окружность, радиус которой равен R = a = b , а центр совпадает с началом координат.

Гиперболой называется множество точек плоскости, для которых абсолютная величина раз­ности расстояний до двух фиксированных точек, F 1 и F 2 этой пло­скости, называемых фокусами, есть величина постоянная (Фокусы F 1 и F 2 гиперболы естественно считать различными, ибо если указанная в определении гиперболы постоянная не равна нулю, то нет ни одной точки плоскости при совпаденииF 1 и F 2 , которая бы удовлетворяла требованиям определения гиперболы. Если же эта постоянная равна нулю и F 1 совпадает с F 2 , то любая точка плоскости удовлетворяет требованиям определения гиперболы.).

Для вывода канонического уравнения гиперболы выберем начало координат в середине отрезка F 1 F 2 , а оси Ох и Оу на­правим так, как указано на рис. 1.2. Пусть длина отрезка F 1 F 2 равна 2с. Тогда в выбранной системе координат точки F 1 и F 2 соответственно имеют координаты (-с, 0) и (с, 0) Обозначим через 2а постоянную, о которой говорится в определении гипер­болы. Очевидно, 2a< 2с, т. е. a < с.

Пусть М - точка плоскости с координатами (х, у) (рис. 1,2). Обозначим через r 1 и r 2 расстояния MF 1 и MF 2 . Согласно опре­делению гиперболы равенство

(1.7)

является необходимым и достаточным условием расположения точки М на данной гиперболе.

Используя выражения (1.2) для r 1 и r 2 и соотношение (1.7), получим следующее необходимое и достаточное условие распо­ложения точки М с координатами х и у на данной гиперболе:

. (1.8)

Используя стандартный прием «уничтожения радикалов», приве­дем уравнение (1.8) к виду

(1.9) (1.10)

Мы должны убедиться в том, что уравнение (1.9), получен­ное путем алгебраических преобразований уравнения (1.8), не приобрело новых корней. Для этого достаточно доказать, что для каждой точки М, координаты х и у которой удовлетворяют уравнению (1.9), величины r 1 и r 2 удовлетворяют соотношению (1.7). Проводя рассуждения, аналогичные тем, которые были сделаны при выводе формул (1.6), найдем для интересующих нас величин r 1 и r 2 следующие выражения:

(1.11)

Таким образом, для рассматриваемой точки М имеем

, и поэтому она располагается на гиперболе.

Уравнение (1.9) называется каноническим уравнением ги­перболы. Величины а и b называются соответственно действи­тельной и мнимой полуосями гиперболы.

Параболой называется множество точек плоскости, для которых расстояние до некоторой фиксированной точки F этой плоскости равно расстоянию до не­которой фиксированной прямой, также расположенной в рас­сматриваемой плоскости.

В декартовых координатах уравнение первой степени определяет некоторую прямую.

Линии, которые в декартовых координатах определяются уравнением первой степени, называются линиями первого порядка. Следовательно, каждая прямая есть линия первого порядка.

Общее уравнение прямой (как общее уравнение первой степени) определяется уравнением вида:

Ах + Ву + С = 0.

Рассмотрим неполные уравнения прямой.

1. С = 0. Уравнение прямой имеет вид: Ах + Ву = 0; прямая проходит через начало координат.

2. В = 0 (А ¹ 0). Уравнение имеет вид Ах + С = 0 или х = а , где а = Прямая проходит через точку А (а ; 0),она параллельна оси Оу . Число а Ох (рис. 1).

Рис. 1

Если а = 0, то прямая совпадает с осью Оу . Уравнение оси ординат Оу имеет вид : х = 0.

3. А = 0 (В ¹ 0). Уравнение имеет вид: Ву + С = 0 или у = b , где b = . Прямая проходит через точку В (0; b ),она параллельна оси Ох . Число b есть величина отрезка, который отсекает прямая на оси Оу (рис. 2).

Рис. 2


Если b = 0, то прямая совпадает с осью абсцисс Ох. Уравнение оси абсцисс Ох имеет вид: у = 0.

Уравнение прямой в отрезках на осях определяется уравнением:

Где числа а и b являются величинами отрезков, отсекаемых прямой на координатных осях (рис. 3).

(х 0 ; у 0) перпендикулярно нормальному вектору = {A ; B }, определяется по формуле:

А (х х 0) + В (у у 0) = 0.

Уравнение прямой, проходящей через данную точку М (х 0 ; у 0) параллельно направляющему вектору = {l ; m }, имеет вид:

Уравнение прямой, проходящей через две данные точки М 1 (х 1 ; у 1) и М 2 (х 2 ; у 2), определяется уравнением:

Угловым коэффициентом прямой k называется тангенс угла наклона прямой к оси Ох , который отсчитывается от положительного направления оси к прямой против часовой стрелки, k = tgα.

Уравнение прямой с угловым коэффициентом k имеет вид:

у = kх + b ,

где k = tgα, b – величина отрезка, отсекаемого прямой на оси Оу (рис. 4).

Уравнение прямой, проходящей через данную точку М (х 0 ; у 0) в данном направлении (угловой коэффициент k известен), определяется по формуле:

у – у 0 = k (х х 0).

Уравнение пучка прямых, проходящих через данную точку М (х 0 ; у 0) (угловой коэффициент k неизвестен), определяется по формуле:

у – у 0 = k (х х 0).


Уравнение пучка прямых, проходящих через точку пересечения прямых

А 1 х + В 1 у + С 1 = 0 и А 2 х + В 2 у + С 2 = 0, определяется по формуле:

α(А 1 х + В 1 у + С 1) + β(А 2 х + В 2 у + С 2) = 0.

Угол j, отсчитанный против часовой стрелки от прямой у = k 1 х + b 1 к прямой у = k 2 х + b 2 , определяется формулой (рис. 5):


Для прямых, заданных общими уравнениями А 1 х + В 1 у + С 1 = 0 и А 2 х + В 2 у + С 2 = 0, угол между двумя прямыми определяется по формуле:

Условие параллельности двух прямых имеет вид : k 1 = k 2 или .

Условие перпендикулярности двух прямых имеет вид : или А 1 А 2 + В 1 В 2 = 0.

Нормальное уравнение прямой имеет вид :

x cosα + y sinα – p = 0,

где p – длина перпендикуляра, опущенного из начала координат на прямую, α – угол наклона перпендикуляра к положительному направлению оси Ох (рис. 6).


Чтобы привести общее уравнение прямой Ах + Ву + С = 0 к нормальному виду, нужно все его члены умножить на нормирующий множитель μ = , взятый со знаком, противоположным знаку свободного члена С .

Расстояние от точки М (х 0 ; у 0) до прямой Ах + Ву + С = 0 определяется по формуле:

Уравнения биссектрис углов между прямыми А 1 х + В 1 у + С 1 = 0 и А 2 х + В 2 у + С 2 = 0 имеют вид:

Пример 4 . Даны вершины треугольника АВС : А (–5; –7), В (7; 2), С (–6; 8). Найти: 1) длину стороны АВ ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол В ; 4) уравнение медианы АЕ ; 5) уравнение и длину высоты СD ; 6) уравнение биссектрисы АК ; 7) уравнение прямой, проходящей через точку Е параллельно стороне АВ ; 8) координаты точки М , расположенной симметрично точке А относительно прямой СD .

1. Расстояние d между двумя точками А (х 1 ; у 1) и В (х 2 ; у 2) определяется по формуле:

Найдем длину стороны АВ как расстояние между двумя точками А (–7; –8) и В (8; –3):

2. Уравнение прямой, проходящей через точки А (х 1 ; у 1) и В (х 2 ; y 2), имеет вид:

Подставляя координаты точек А и В , получим уравнение стороны АВ :

3(х + 5) = 4(у + 7); 3х – 4у – 13 = 0 ().

Для нахождения углового коэффициента k AB прямой (АВ ) разрешим полученное уравнение относительно у :

4y = 3x – 13;

– уравнение прямой (АВ )с угловым коэффициентом,

Аналогично подставляя координаты точек В и С , получим уравнение прямой (ВС ):

6х – 42 = –13у + 26; 6x + 13y – 68 = 0 (BC ).

Разрешим уравнение прямой (ВС )относительно у : .

3. Тангенс угла j между двумя прямыми, угловые коэффициенты которых равны k 1 и k 2­ , определяется по формуле:

Внутренний угол В образован прямыми (АВ ) и (ВС ), причем это острый угол, на который надо повернуть прямую ВС в положительном направлении (против часовой стрелки) до ее совпадения с прямой (АВ ). Поэтому подставим в формулу k 1 = , k 2 = :

ÐВ = arctg = arctg 1,575 » 57,59°.

4. Чтобы найти уравнение медианы (АЕ ), определим сначала координаты точки Е, которая является серединой стороны ВС. Для этого применим формулы деления отрезка на две равные части:

Следовательно, точка Е имеет координаты: Е (0,5; 5).

Подставляя в уравнение прямой, проходящей через две точки, координаты точек А и Е , находим уравнение медианы (АЕ ):

24х – 11у + 43 = 0 (АЕ ).

5. Так как высота CD перпендикулярна стороне АВ , то прямая (АВ )перпендикулярна прямой (CD ). Для нахождения углового коэффициента высоты CD, воспользуемся усло­вием перпендикулярности двух прямых:

Уравнение прямой, проходящей через данную точку М (х 0 ; у 0) в заданном направлении (угловой коэффициент k известен), имеет вид:

y – у 0 = k (x – x 0).

Подставляя в последнее уравнение координаты точки С (–6; 8) и , получим уравнение высоты CD :

у – 8 = (х – (–6)), 3у – 24 = – 4х – 24, 4х + 3у = 0 (CD ).

Расстояние от точки М (х 0 ; у 0) до прямой Аx + By+C = 0 определяется по формуле:

Длину высоты CD найдем как расстояние от точки С (–6; 8) до прямой (АВ ): 3х – 4у – 13. Подставляя в формулу необходимые величины, найдем длину CD :

6. Уравнения биссектрис углов между прямыми Аx + By+ C = 0 и
А
1 x + B 1 y+ C 1 = 0 определяются по формуле:

Уравнение биссектрисы АК найдем как одно из уравнений биссектрис углов между прямыми (АВ )и (АС ).

Составим уравнение прямой (АС ) как уравнение прямой, проходящей через две точки А (–5; –7) и С (–6; 8):

Преобразуем последнее уравнение:

15(х + 5) = – (у + 7); 15х + у + 82 = 0 ().

Подставляя коэффициенты из общих уравнений прямых (АВ )и (АС ), получим уравнения биссектрис углов:

Преобразуем последнее уравнение:

; (3х – 4у – 13) = ± 5 (15х + у + 82);

3 х – 4 у – 13 = ± (75х +5у + 410).

Рассмотрим два случая:

1) 3 х – 4 у – 13 = 75х +5у + 410.у l АВ .

Треугольник АВС, высота CD , медиана АЕ , биссектриса АК , прямая l и точка М построены в системе координат Оху (рис.7).

(МИФ-2, №3, 2005)

Линии второго порядка на плоскости

П. 1. Определение линии второго порядка

Рассмотрим плоскость, на которой задана прямоугольная декартова система координат (XOY). Тогда любая точка M однозначно определяется своими координатами (x, y). Кроме того, любая пара чисел (x, y) определяет некоторую точку плоскости. Координаты точек могут удовлетворять некоторым условиям, например, какому-нибудь уравнению f(x, y)=0 относительно неизвестных (x, y). В этом случае говорят, что уравнение f(x, y)=0 задает на плоскости некоторую фигуру. Рассмотрим примеры.

Пример 1. Рассмотрим функцию y = f(x ). Координаты точек графика этой функции удовлетворяют уравнению y – f(x ) = 0.

Пример 2. Уравнение (*), где a , b , c – некоторые числа, задают на плоскости некоторую прямую. (Уравнения вида (*) называют линейными ).

Пример 3. График гиперболы состоит из точек, координаты которых удовлетворяют уравнению https://pandia.ru/text/80/134/images/image004_92.gif" width="161" height="25">.

Определение 1. Уравнение вида (**), где хотя бы один из коэффициентов DIV_ADBLOCK53">


Мы рассмотрим геометрические и физические свойства названных выше линии. Начнем с эллипса.

https://pandia.ru/text/80/134/images/image008_54.gif" width="79" height="44 src="> (1).

Уравнение (1) называется каноническим уравнением эллипса.

О виде эллипса можно судить по рисунку 1.

Положим . Точки называются фокусами эллипса. С фокусами связан ряд интересных свойств, о которых мы будем говорить ниже.

Определение 4. Гиперболой называется фигура на плоскости, координаты всех точек которой удовлетворяют уравнению

(2).

Уравнение (2) называется каноническим уравнением гиперболы. О виде гиперболы можно судить по рисунку 2.

Положим . Точки называются фокусами гиперболы. Параметр a называется действительной , а параметр b - мнимой полуосью гиперболы, соответственно ox – действительная, а oy – мнимая оси гиперболы.

https://pandia.ru/text/80/134/images/image016_34.gif" width="61" height="41">, называются асимптотами . При больших значениях параметра x точки асимптот бесконечно близко приближаются к ветвям гиперболы. На рисунке 2 асимптоты изображены пунктирными линиями.

Определение 5. Параболой называется фигура на плоскости, координаты всех точек которой удовлетворяют уравнению

https://pandia.ru/text/80/134/images/image018_28.gif" width="47" height="45 src=">.

П. 3. Свойства фокусов ЛВП

Для каждой ЛВП в П.2. указывались специальные точки – фокусы . Эти точки играют большую роль для объяснения важных свойств эллипса, гиперболы и параболы. Мы сформулируем эти свойства в виде теорем.

Теорема. 1. Эллипс есть множество точек M , таких, что сумма расстояний от этих точек до фокусов равно 2 a :

https://pandia.ru/text/80/134/images/image020_26.gif" width="115" height="23 src="> (5).

Для того чтобы сформулировать аналогичное свойство для параболы, определим директрису . Это прямая d , заданная уравнением https://pandia.ru/text/80/134/images/image022_23.gif" width="103" height="21 src="> (6).

П. 4. Фокусы и касательные

https://pandia.ru/text/80/134/images/image024_24.gif" align="right" width="322" height="386 src=">.gif" width="52" height="24 src="> принадлежит соответствующей ЛВП. Ниже приведены уравнения касательных, проходящих через эту точку:

– для эллипса, (7)

– для гиперболы, (8)

– для параболы. (9)

Если в точку касания с эллипсом или гиперболой провести отрезки из обоих фокусов (их называют фокальными радиусами точки), то обнаружится замечательное свойство (смотри рис.5 и 6): фокальные радиусы образуют равные углы с касательной, проведенной в этой точке.

Это свойство имеет интересную физическую интерпретацию. Например, если считать контур эллипса зеркальным, то, лучи света от точечного источника, помещенного в одном его фокусе, после отражения от стенок контура обязательно пройдут через второй фокус .


Большое практическое применение получило аналогичное свойство для параболы. Дело в том, что фокальный радиус любой точки параболы составляет с касательной, проведенной в эту точку угол, равный углу между касательной и осью параболы .

Физически это интерпретируется так: лучи точечного , помещенного в фокусе параболы, после отражения от ее стенок распространяются параллельно оси симметрии параболы . Именно поэтому зеркала фонарей и прожекторов имеют параболическую форму. Кстати, если параллельный оси параболы поток света (радиоволн) входит в нее, то, после отражения от стенок, все его лучи пройдут через фокус. На этом принципе работают станции космической связи, а также радары.

П. 5. Еще немного физики

ЛВП нашли широкое применение в физике и астрономии . Так, было установлено, что одно относительно легкое тело (например, спутник) движется в поле силы тяготения более массивного тела (планеты или звезды) по траектории, представляющей собой одну из ЛВП. При этом более массивное тело находится в фокусе этой траектории.

Впервые эти свойства подробно изучил Иоганн Кеплер и они были названы Законами Кеплера.

Контрольное задание № 1 для учащихся 10 классов

Вопросы для самопроверки (5 баллов за задание)

М.10.1.1. Дайте определение ЛВП. Приведите несколько примеров уравнений, которые задают ЛВП.

М.10.1.2. Вычислите координаты фокусов а) эллипса, б) гиперболы, если a =13, b =5.

М.10.1.3. Составьте каноническое уравнения а) эллипса, б) гиперболы, если известно, что эта линия проходит через точки с координатами (5, 6) и (-8, 7).

М.10.1.4. Проверьте, что прямая, заданная уравнением (9) действительно пересекается с параболой, заданной уравнением (3) только в точке с координатами . (Указание : сначала подставьте уравнение касательной в уравнение параболы, а затем убедитесь, что дискриминант получившегося квадратного уравнения равен нулю .)

М.10.1.5. Составьте уравнение касательной к гиперболе с действительной полуосью 8 и мнимой – 4 в точке с координатой x =11, если вторая координата точки отрицательна.

Практическая работа (10 баллов)

М.10.1.6. Постройте несколько эллипсов по следующему методу: закрепите лист бумаги на фанере и воткните в бумагу (но не до конца) пару кнопок. Возьмите кусок нитки и свяжите концы. Накиньте получившуюся петлю на обе кнопки (фокусы будущего эллипса), острым концом карандаша натяните нить и аккуратно проведите линию, следя за тем, чтобы нить была натянута. Изменяя размеры петли, вы сможете построить несколько софокусных эллипсов. Попробуйте объяснить с помощью Теоремы 1, что полученные линии действительно эллипсы и объясните, как, зная расстояние между кнопками и длину нитки, можно рассчитать полуоси эллипса.