Что такое выталкивающая сила. Почему действует выталкивающая сила? Выталкивающая сила

Часто научные открытия становятся следствием простой случайности. Но только люди с подготовленным умом могут оценить важность простого совпадения и сделать из него далеко идущие выводы. Именно благодаря цепи случайных событий в физике появился закон Архимеда, объясняющий поведение тел в воде.

Предание

В Сиракузах об Архимеде слагали легенды. Однажды правитель этого славного города усомнился в честности своего ювелира. В короне, изготовленной для правителя, должно было содержаться определенное количество золота. Проверить этот факт поручили Архимеду.

Архимед установил, что в воздухе и в воде тела имеют разный вес, причем разность прямо пропорциональна плотности измеряемого тела. Измерив вес короны в воздухе и в воде, и проведя аналогичный опыт с целым куском золота, Архимед доказал, что в изготовленной короне существовала примесь более легкого металла.

По преданию, Архимед сделал это открытие в ванне, наблюдая за выплеснувшейся водой. Что стало дальше с нечестным ювелиром, история умалчивает, но умозаключение сиракузского ученого легло в основу одного из важнейших законов физики, который известен нам, как закон Архимеда.

Формулировка

Результаты своих опытов Архимед изложил в труде «О плавающих телах», который, к сожалению, дошел до наших дней лишь в виде отрывков. Современная физика закон Архимеда описывает, как совокупную силу, действующую на тело, погруженное в жидкость. Выталкивающая сила тела в жидкости направлена вверх; ее абсолютная величина равна весу вытесненной жидкости.

Действие жидкостей и газов на погруженное тело

Любой предмет, погруженный в жидкость, испытывает на себе силы давления. В каждой точке поверхности тела данные силы направлены перпендикулярно поверхности тела. Если бы эти они были одинаковы, тело испытывало бы только сжатие. Но силы давления увеличиваются пропорционально глубине, поэтому нижняя поверхность тела испытывает больше сжатие, чем верхняя. Можно рассмотреть и сложить все силы, действующие на тело в воде. Итоговый вектор их направления будет устремлен вверх, происходит выталкивание тела из жидкости. Величину этих сил определяет закон Архимеда. Плавание тел всецело основывается на этом законе и на различных следствиях из него. Архимедовы силы действуют и в газах. Именно благодаря этим силам выталкивания в небе летают дирижабли и воздушные шары: благодаря воздухоизмещению они становятся легче воздуха.

Физическая формула

Наглядно силу Архимеда можно продемонстрировать простым взвешиванием. Взвешивая учебную гирю в вакууме, в воздухе и в воде можно видеть, что вес ее существенно меняется. В вакууме вес гири один, в воздухе - чуть ниже, а в воде - еще ниже.

Если принять вес тела в вакууме за Р о, то его вес в воздушной среде может быть описан такой формулой: Р в =Р о - F а;

здесь Р о - вес в вакууме;

Как видно из рисунка, любые действия со взвешиванием в воде значительно облегчают тело, поэтому в таких случаях сила Архимеда обязательно должна учитываться.

Для воздуха эта разность ничтожна, поэтому обычно вес тела, погруженного в воздушную среду, описывается стандартной формулой.

Плотность среды и сила Архимеда

Анализируя простейшие опыты с весом тела в различных средах, можно прийти к выводу, что вес тела в различных средах зависит от массы объекта и плотности среды погружения. Причем чем плотнее среда, тем больше сила Архимеда. Закон Архимеда увязал эту зависимость и плотность жидкости или газа отражается в его итоговой формуле. Что же еще влияет на данную силу? Другими словами, от каких характеристик зависит закон Архимеда?

Формула

Архимедову силу и силы, которые на нее влияют, можно определить при помощи простых логических умозаключений. Предположим, что тело определенного объема, погруженное в жидкость, состоит из тоже же самой жидкости, в которую оно погружено. Это предположение не противоречит никаким другим предпосылкам. Ведь силы, действующие на тело, никоим образом не зависят от плотности этого тела. В этом случае тело, скорее всего, будет находиться в равновесии, а сила выталкивания будет компенсироваться силой тяжести.

Таким образом, равновесие тела в воде будет описываться так.

Но сила тяжести, из условия, равна весу жидкости, которую она вытесняет: масса жидкости равна произведению плотности на объём. Подставляя известные величины, можно узнать вес тела в жидкости. Этот параметр описывается в виде ρV * g.

Подставляя известные значения, получаем:

Это и есть закон Архимеда.

Формула, выведенная нами, описывает плотность, как плотность исследуемого тела. Но в начальных условиях было указано, что плотность тела идентична плотности окружающей его жидкости. Таким образом, в данную формулу можно смело подставлять значение плотности жидкости. Визуальное наблюдение, согласно которому в более плотной среде сила выталкивания больше, получило теоретическое обоснование.

Применение закона Архимеда

Первые опыты, демонстрирующие закон Архимеда, известны еще со школьной скамьи. Металлическая пластинка тонет в воде, но, сложенная в виде коробочки, может не только удерживаться на плаву, но и нести на себе определенный груз. Это правило - важнейший вывод из правила Архимеда, оно определяет возможность построения речных и морских судов с учетом их максимальной вместимости (водоизмещения). Ведь плотность морской и пресной воды различна и суда, и подводные лодки должны учитывать перепады этого параметра при вхождении в устья рек. Неправильный расчет может привести к катастрофе - судно сядет на мель, и для его подъема потребуются значительные усилия.

Закон Архимеда необходим и подводникам. Дело в том, что плотность морской воды меняет свое значение в зависимости от глубины погружения. Правильный расчет плотности позволит подводникам правильно рассчитать давление воздуха внутри скафандра, что повлияет на маневренность водолаза и обеспечит его безопасное погружение и всплытие. Закон Архимеда должен учитываться также и при глубоководном бурении, огромные буровые вышки теряют до 50% своего веса, что делает их транспортировку и эксплуатацию менее затратным мероприятием.

Несмотря на явные различия свойств жидкостей и газов, во многих случаях их поведение определяется одними и теми же параметрами и уравнениями, что позволяет использовать единый подход к изучению свойств этих веществ.

В механике газы и жидкости рассматривают как сплошные среды. Предполагается, что молекулы вещества распределены непрерывно в занимаемой ими части пространства. При этом плотность газа значительно зависит от давления, в то время как для жидкости ситуация иная. Обычно при решении задач этим фактом пренебрегают, используя обобщенное понятие несжимаемой жидкости, плотность которой равномерна и постоянна.

Определение 1

Давление определяется как нормальная сила $F$, действующая со стороны жидкости на единицу площади $S$.

$ρ = \frac{\Delta P}{\Delta S}$.

Замечание 1

Давление измеряется в паскалях. Один Па равен силе в 1 Н, действующей на единицу площади 1 кв. м.

В состояние равновесия давление жидкости или газа описывается законом Паскаля, согласно которому давление на поверхность жидкости, производимое внешними силами, передается жидкостью одинаково во всех направлениях.

При механическом равновесии, давление жидкости по горизонтали всегда одинаково; следовательно, свободная поверхность статичной жидкости всегда горизонтальна (кроме случаев соприкосновения со стенками сосуда). Если принять во внимание условие несжимаемости жидкости, то плотность рассматриваемой среды не зависит от давления.

Представим некоторый объем жидкости, ограниченный вертикальным цилиндром. Поперечное сечение столба жидкости обозначим $S$, его высоту $h$, плотность жидкости $ρ$, вес $P=ρgSh$. Тогда справедливо следующее:

$p = \frac{P}{S} = \frac{ρgSh}{S} = ρgh$,

где $p$ - давление на дно сосуда.

Отсюда следует, что давление меняется линейно, в зависимости от высоты. При этом $ρgh$ - гидростатическое давление, изменением которого и объясняется возникновение силы Архимеда.

Формулировка закона Архимеда

Закон Архимеда, один из основных законов гидростатики и аэростатики, гласит: на тело, погруженное в жидкость или газ, действует выталкивающая или подъемная сила, равная весу объема жидкости или газа, вытесненного частью тела, погруженной в жидкость или газ.

Замечание 2

Возникновение Архимедовой силы связано с тем, что среда - жидкость или газ - стремится занять пространство, отнятое погруженным в нее телом; при этом тело выталкивается из среды.

Отсюда и второе название для этого явление – выталкивающая или гидростатическая подъемная сила.

Выталкивающая сила не зависит от формы тела, также как и от состава тела и прочих его характеристик.

Возникновение Архимедовой силы обусловлено разностью давления среды на разных глубинах. Например, давление на нижние слои воды всегда больше, чем на верхние слои.

Проявление силы Архимеда возможно лишь при наличии тяжести. Так, например, на Луне выталкивающая сила будет в шесть раз меньше, чем на Земле для тел равных объемов.

Возникновение Силы Архимеда

Представим себе любую жидкую среду, например, обычную воду. Мысленно выделим произвольный объем воды замкнутой поверхностью $S$. Поскольку вся жидкость по условию находится в механическом равновесии, выделенный нами объем также статичен. Это означает, что равнодействующая и момент внешних сил, воздействующих на этот ограниченный объем, принимают нулевые значения. Внешние силы в данном случае – вес ограниченного объема воды и давление окружающей жидкости на внешнюю поверхность $S$. При этом получается, что равнодействующая $F$ сил гидростатического давления, испытываемого поверхностью $S$, равна весу того объема жидкости, который был ограничен поверхностью $S$. Для того чтобы полный момент внешних сил обратился в нуль, равнодействующая $F$ должна быть направлена вверх и проходить через центр масс выделенного объема жидкости.

Теперь обозначим, что вместо этой условного ограниченной жидкости в среду было помещено любое твердое тело соответствующего объема. Если соблюдается условие механического равновесия, то со стороны окружающей среды никаких изменений не произойдет, в том числе останется прежним давление, действующее на поверхность $S$. Таким образом мы можем дать более точную формулировку закона Архимеда:

Замечание 3

Если тело, погруженное в жидкость, находится в механическом равновесии, то со стороны окружающей его среды на него действует выталкивающая сила гидростатического давления, численно равная весу среды в объеме, вытесненным телом.

Выталкивающая сила направлена вверх и проходит через центр масс тела. Итак, согласно закону Архимеда для выталкивающей силы выполняется:

$F_A = ρgV$, где:

  • $V_A$ - выталкивающая сила, H;
  • $ρ$ - плотность жидкости или газа, $кг/м^3$;
  • $V$ - объем тела, погруженного в среду, $м^3$;
  • $g$ - ускорение свободного падения, $м/с^2$.

Выталкивающая сила, действующая на тело, противоположна по направлению силе тяжести, поэтому поведение погруженного тела в среде зависит от соотношения модулей силы тяжести $F_T$ и Архимедовой силы $F_A$. Здесь возможны три случая:

  1. $F_T$ > $F_A$. Сила тяжести превышает выталкивающую силу, следовательно, тело тонет/падает;
  2. $F_T$ = $F_A$. Сила тяжести уравнивается с выталкивающей силой, поэтому тело «зависает» в жидкости;
  3. $F_T$

Выталкивающую силу, или силу Архимеда, можно вычислить. Особенно легко это сделать для тела, стороны которого прямоугольники (прямоугольного параллелепипеда). Например, такую форму имеет брусок.

Поскольку боковые силы давления жидкости можно не учитывать, так как они взаимно уничтожаются (их равнодействующая равна нулю), то рассматриваются только силы давления воды, действующие на нижнюю и верхнюю поверхности. Если тело не полностью погружено в воду, то есть только сила давления воды, действующая снизу. Она единственная, которая создает выталкивающую силу.

Давление жидкости на глубине h определяется формулой:

Сила давления определяется формулой:

Заменив давление во второй формуле на равную ему правую часть из первой формулы, получим:

Это и есть сила давления жидкости, действующая на поверхность тела на определенной глубине. Если тело плавает на поверхности, то эта сила будет выталкивающей силой (силой Архимеда). h здесь определяется высотой подводной части тела. В таком случае формулу можно записать так: F A = ρghS. Тем самым подчеркнув, что речь идет о силе Архимеда.

Произведение высоты (h) погруженной в воду части прямоугольного бруска на площадь его основания (S) - это объем (V) погруженной части этого тела. Действительно, чтобы найти объем параллелепипеда надо перемножить его ширину (a), длину (b) и высоту (h). Произведение ширины на длину есть площадь основания (S). Поэтому в формуле мы можем заменить произведение hS на V:

Теперь обратим внимание на то, что ρ - это плотность жидкости, а V - это объем погруженного тела (или части тела). Но ведь тело, погружаясь в жидкость, вытесняет из нее объем жидкости, равный погруженному телу. То есть, если погрузить в воду тело объемом 10 см 3 , то оно вытеснит 10 см 3 воды. Конечно, этот объем воды скорее всего не выскочит из емкости, заменившись объемом тела. Просто уровень воды в емкости поднимется на 10 см 3 .

Поэтому в формуле F A = ρgV мы можем иметь в виду не объем погруженного тела, а объем вытесненной телом воды.

Вспомним, что произведение плотности (ρ) на объем (V) - это масса тела (m):

В таком случае формулу, определяющую выталкивающую силу, можно записать так:

Но ведь произведение массы тела (m) на ускорение свободного падения (g) есть вес (P) этого тела. Тогда получается такое равенство:

Таким образом, сила Архимеда (или выталкивающая сила) равна по модулю (численному значению) весу жидкости в объеме, равном объему погруженного в нее тела (или его погруженной части) . Это и есть закон Архимеда .

Если тело в виде бруска полностью погружено в воду, то выталкивающую силу для него определяет разность между силой давления воды сверху и силой давления снизу. Сверху на тело давит сила, равная

F верх = ρgh верх S,

F низ = ρgh низ S,

Тогда мы можем записать

F A = ρgh низ S – ρgh верх S = ρgS(h низ - h верх)

h верх – это расстояние от кромки воды до верхней поверхности тела, а h низ - это расстояние от кромки воды до нижней поверхности тела. Их разность есть высота тела. Следовательно,

F A = ρghS, где h - это высота тела.

Получилось то же самое, что и для частично погруженного тела, хотя там h - это высота части тела, находящейся под водой. В том случае уже было доказано, что F A = P. То же самое выполняется и здесь: выталкивающая сила, действующая на тело, равна по модулю весу вытесненной им жидкости, которая равна по объему погруженному телу.

Обратите внимание, что вес тела и вес жидкости одинаковых объемов чаще всего разный, так как у тела и жидкости чаще всего разные плотности. Поэтому нельзя говорить, что выталкивающая сила равна весу тела. Она равна весу жидкости, объемом равному телу. Причем весу по модулю, так как выталкивающая сила направлена вверх, а вес вниз.

Плавучесть – это выталкивающая сила, действующая на тело, погруженное в жидкость (или газ), и направленная противоположно силе тяжести. В общих случаях выталкивающая сила может быть вычислена по формуле: F b = V s × D × g, где F b - выталкивающая сила; V s - объем части тела, погруженной в жидкость; D – плотность жидкости, в которую погружают тело; g – сила тяжести.

Шаги

Вычисление по формуле

    Найдите объем части тела, погруженной в жидкость (погруженный объем). Выталкивающая сила прямо пропорциональна объему части тела, погруженной в жидкость. Другими словами, чем больше погружается тело, тем больше выталкивающая сила. Это означает, что даже на тонущие тела действует выталкивающая сила. Погруженный объем должен измеряться в м 3 .

    • У тел, которые полностью погружены в жидкость, погруженный объем равен объему тела. У тел, плавающих в жидкости, погруженный объем равен объему части тела, скрытой под поверхностью жидкости.
    • В качестве примера рассмотрим шар, плавающий в воде. Если диаметр шара равен 1 м, а поверхность воды доходит до середины шара (то есть он погружен в воду наполовину), то погруженный объем шара равен его объему, деленному на 2. Объем шара вычисляется по формуле V = (4/3)π(радиус) 3 = (4/3)π(0,5) 3 = 0,524 м 3 . Погруженный объем: 0,524/2 = 0,262 м 3 .
  1. Найдите плотность жидкости (в кг/м 3), в которую погружается тело. Плотность – это отношение массы тела к занимаемому этим телом объему. Если у двух тел одинаковый объем, то масса тела с большей плотностью будет больше. Как правило, чем больше плотность жидкости, в которую погружается тело, тем больше выталкивающая сила. Плотность жидкости можно найти в интернете или в различных справочниках.

    • В нашем примере шар плавает в воде. Плотность воды приблизительно равна 1000 кг/м 3 .
    • Плотности многих других жидкостей можно найти .
  2. Найдите силу тяжести (или любую другую силу, действующую на тело вертикально вниз). Не важно, плавает ли тело или тонет, на него всегда действует сила тяжести. В естественных условиях сила тяжести (а точнее сила тяжести, действующая на тело массой 1 кг) приблизительно равна 9,81 Н/кг. Тем не менее, если на тело действуют и другие силы, например, центробежная сила, такие силы необходимо учесть и вычислить результирующую силу, направленную вертикально вниз.

    • В нашем примере мы имеем дело с обычной стационарной системой, поэтому на шар действует только сила тяжести, равная 9,81 Н/кг.
    • Однако если шар плавает в емкости с водой, которая вращается вокруг некоторой точки, то на шар будет действовать центробежная сила, которая не позволяет шару и воде выплескиваться наружу и которую необходимо учесть в расчетах.
  3. Если у вас есть значения погруженного объема тела (в м 3), плотность жидкости (в кг/м 3) и сила тяжести (или любая другая сила, направленная вертикально вниз), то вы можете вычислить выталкивающую силу. Для этого просто перемножьте указанные выше значения, и вы найдете выталкивающую силу (в Н).

    • В нашем примере: F b = V s × D × g. F b = 0,262 м 3 × 1000 кг/м 3 × 9,81 Н/кг = 2570 Н.
  4. Выясните, будет ли тело плавать или тонуть. По приведенной выше формуле можно вычислить выталкивающую силу. Но, выполнив дополнительные расчеты, вы можете определить, будет ли тело плавать или тонуть. Для этого найдите выталкивающую силу для всего тела (то есть в вычислениях используйте весь объем тела, а не погруженный объем), а затем найдите силу тяжести по формуле G = (масса тела)*(9,81 м/с 2). Если выталкивающая сила больше силы тяжести, то тело будет плавать; если же сила тяжести больше выталкивающей силы, то тело будет тонуть. Если силы равны, то тело обладает «нейтральной плавучестью».

    • Например, рассмотрим 20 килограммовое бревно (цилиндрической формы) с диаметром 0,75 м и высотой 1,25 м, погруженное в воду.
      • Найдите объем бревна (в нашем примере объем цилиндра) по формуле V = π(радиус) 2 (высота) = π(0,375) 2 (1,25) = 0,55 м 3 .
      • Далее вычислите выталкивающую силу: F b = 0,55 м 3 × 1000 кг/м 3 × 9,81 Н/кг = 5395,5 Н.
      • Теперь найдите силу тяжести: G = (20 кг)(9,81 м/с 2) = 196,2 Н. Это значение намного меньше значения выталкивающей силы, поэтому бревно будет плавать.
  5. Используйте описанные выше вычисления для тела, погруженного в газ. Помните, что тела могут плавать не только в жидкостях, но и в газах, которые вполне могут выталкивать некоторые тела, несмотря на очень небольшую плотность газов (вспомните про шар, наполненный гелием; плотность гелия меньше плотности воздуха, поэтому шар с гелием летает (плавает) в воздухе).

    Постановка эксперимента

    1. Поместите небольшую чашку в ведро. В этом простом эксперименте мы покажем, что на тело, погруженное в жидкость, действует выталкивающая сила, так как тело выталкивает объем жидкости, равный погруженному объему тела. Мы также продемонстрируем, как найти выталкивающую силу при помощи эксперимента. Для начала поместите небольшую чашку в ведро (или кастрюлю).

    2. Наполните чашку водой (до краев). Будьте осторожны! Если вода из чашки вылилась в ведро, вылейте воду и начните заново.

      • Для эксперимента предположим, что плотность воды равна 1000 кг/м 3 (только если вы не используете соленую воду или другую жидкость).
      • Для наполнения чашки до краев используйте пипетку.
    3. Возьмите небольшой предмет, который поместится в чашке и не будет поврежден водой. Найдите массу этого тела (в килограммах; для этого взвесьте тело на весах и конвертируйте значение в граммах в килограммы). Затем медленно опустите предмет в чашку с водой (то есть погрузите тело в воду, но при этом не погружайте пальцы). Вы увидите, что некоторое количество воды вылилось из чашки в ведро.

      • В этом эксперименте мы опустим в чашку с водой игрушечный автомобиль массой 0,05 кг. Объем этого автомобиля нам не нужен, чтобы вычислить выталкивающую силу.
    4. При погружении тела в воду оно выталкивает некоторый объем воды (иначе тело не погрузилось бы в воду). Когда тело выталкивает воду (то есть тело действует на воду), на тело начинает действовать выталкивающая сила (то есть вода действует на тело). Вылейте воду из ведра в мерный стакан. Объем воды в мерном стакане должен быть равен объему погруженного тела.

      • Другими словами, если тело плавает, то объем вытесненной жидкости равен погруженному объему тела. Если тело утонуло, то объем вытесненной жидкости равен объему всего тела.
    5. Вычислите массу вытесненной воды по известным значениям объема этой воды и плотности воды. Значение объема воды, показанного шкалой мерного стакана, конвертируйте в м 3 (вы можете сделать это ), а затем умножьте объем вытесненной воды на плотность воды (1000 кг/м 3).

      • В нашем примере игрушечный автомобиль утонул, вытеснив около двух столовых ложек воды (0,00003 м 3). Вычислим массу вытесненной воды: 1000 кг/м 3 × 0,00003 м 3 = 0,03 кг.
    6. Сравните массу вытесненной воды с массой погруженного тела. Если масса погруженного тела больше массы вытесненной воды, то тело утонет. Если масса вытесненной воды больше массы тела, то оно плавает. Поэтому для того, чтобы тело плавало, оно должно вытеснять количество воды с массой, превышающей массу самого тела.

      • Таким образом, тела, имеющие небольшую массу, но большой объем, обладают наилучшей плавучестью. Эти два параметра характерны для полых тел. Вспомните лодку – она обладает превосходной плавучестью, потому что она полая и вытесняет много воды при небольшой массе самой лодки. Если бы лодка не была полой, она бы вообще не плавала (а тонула).
      • В нашем примере масса автомобиля (0,05 кг) больше массы вытесненной воды (0,03 кг). Поэтому автомобиль и утонул.

На поверхность тела, которое находится в жидкости или газе действуют силы давления. Известно, что давление увеличивается с увеличением глубины погружения. Значит, что силы давления, которые действуют на нижнюю часть тела и направлены вверх больше по модулю, чем силы, которые действуют на верхнюю часть тела и направлены вниз.

Определение и формула силы выталкивания

Определение

Равнодействующую сил давления на тело, которое погружено в жидкость или газ называют выталкивающей силой . Выталкивающая сила может быть больше, чем сила тяжести, которая действует на тело. Силы выталкивания появляются и в том случае,если тело находится в жидкости или газе частично.

Если тело, находящееся в жидкости оставить в покое, то оно тонет, находится в равновесии или всплывает на поверхность. Это зависит от соотношения силы тяжести и выталкивающей силы (F A),действующих на тело. В первом случае (тело тонет) mg>F A . Если mg=F A , то тело находится в равновесии. При mg

Закон Архимеда

На тело, погруженное в жидкость или газ, действует сила выталкивания (сила Архимеда F A), равная весу вытесненной им жидкости или газа. В математическом виде данный закон выглядит как:

где – плотность жидкости (газа), в которую погружено тело, g=9,8 м/с 2 – ускорение свободного падения, V – объем тела (его части), которое находится в жидкости (газе). Сила Архимеда приложена к центру тяжести объема части тела, которая находится в жидкости (газе).

Закон Архимеда можно применять для вычисления плотности однородного тела неправильной формы. При этом тело взвешивают два раза: один раз в воздухе, второй раз, погрузив тело в жидкость, плотность которой известна.

Единицы измерения силы выталкивания

Основной единицей измерения силы Архимеда, как и любой силы в системе СИ является: =Н

В СГС: F A ]=дин

1Н= (кг м)/с 2

Примеры решения задач

Пример

Задание. Какова сила выталкивания, которая действует на куб, погруженный в систему жидкостей. Сосуд наполнен водой, поверх воды налит керосин. Граница раздела жидкостей проходит посередине грани куба. Плотность воды считайте равной 1 =10 3 кг/м 3 , плотность керосина равна 2 =0,81 10 3 кг/м 3 . Сторона куба равна a=0,1 м.

Решение. Сделаем рисунок.

Сила выталкивания, которая действует со стороны воды, на половину куба равна:

Сила выталкивания, которая действует со стороны керосина, на половину куба равна:

Обе силы направлены вверх. Приложены они к разным точкам (центрам масс объемов тел, погруженных в соответствующие жидкости), при суммировании векторы можно перенести в одну точку параллельно самим себе. Получим, результирующая сила выталкивания равна:

Подставим компоненты силы (1.2), (1.3) в выражение (1.1), имеем:

Проведем вычисления:

Ответ. Ответ: F A =8,8 Н

Пример

Задание. Какова плотность камня, если его вес в воздухе 3,2 Н, а вес в воде 1,8 Н.

Решение. Вес камня в воздухе:

где – плотность камня, V – объем камня. Взвешивая камень в воде, получаем вес камня в жидкости, равный.