Пленки ленгмюра блоджетт применение. Структура мезогенов в объемных образцах и пленках ленгмюра-блоджетт

Термин пленки Лэнгмюра-Блоджетт (Langmuir Blodgett films ) обозначает моно- или многослойные пленки, перенесенные с границы раздела вода–воздух (в общем случае жидкость–воздух) на твердую подложку. Молекулярная пленка на границе раздела вода–воздух называется Лэнгмюровской пленкой. Первые систематические исследования монослоев из амфифильных молекул на границе раздела вода–воздух были выполнены Лэнгмюром в 1917 г. Первое исследование по осаждению многослойной пленки из длинных цепочек карбоновой кислоты на твердую подложку было проведено К.Б. Блоджетт в 1935 г. Метод физического осаждения LB-пленок при погружении (или подъеме) в жидкость, на поверхности которой находится органическая пленка, называется LB-осаждением. В качестве жидкой среды чаще всего используется деионизованная вода, но могут использоваться и другие жидкости, например, глицерин и ртуть. С поверхности воды должны быть удалены все органические примеси фильтрацией (через фильтр из активированного угля).

Рис. 3.23. Изображение в сканирующем туннельном микроскопе квантовых точек из InAs на GaAs, созданных самосборкой (каждая точка имеет высоту 6 нм и диаметр основания 30 нм)

Вещества, монослои которых переносятся LB-методом и взаимодействуют с водой (растворяются в воде), смачиваются или набухают, называются гидрофильными . Вещества, которые не взаимодействуют с водой (не растворяются), не смачиваются и не набухают, называются гидрофобными . Обычно амфифильное вещество растворяется и в воде, и в жирах, но в данном случае амфифиль – это молекула, которая не растворяется в воде. Один конец такой молекулы является гидрофильным и поэтому оказывается предпочтительно погруженным в воду, а другой конец является гидрофобным и поэтому предпочтительно находится в воздухе (или в неполярном растворителе).

Классический пример амфифильного вещества – стеариновая кислота (С 1 7 Н 35 СО 2 Н), в которой длинный гидрокарбонатный «хвост» (С 17 Н 35 -) является гидрофобным, а основная (головная) карбоксильная группа (- СО 2 Н) является гидрофильной. Так как амфифили имеют один гидрофильный конец («head » – голова), а другой конец гидрофобный («tail » – хвост), они предпочитают располагаться на границах раздела, таких как воздух–вода или масло-вода. По этой причине их еще называют поверхностно-активными(surfactants ).

Уникальным свойством LB-пленок является возможность формирования упорядоченной структуры на твердой поверхности из некристаллического материала . Это позволяет переносить монослои на различные подложки. В большинстве случаев используются подложки с гидрофильной поверхностью, когда монослои переносятся

в стянутом (retraction ) виде. Можно использовать такие материалы, как стекло, кварц, алюминий, хром, олово (последние в окисленном виде, например, Al 2 O 3 Al), золото, серебро и полупроводниковые материалы (кремний, арсенид галия и др.). В типичных экспериментах используются пластины кремния, очищенные кипячением в смеси 30%-й перекиси водорода и концентрированной серной кислоты (30/70вес.%) при 90°С в течение 30 мин. В зависимости от типа обработки поверхности подложке можно придать гидрофильные или гидрофобные свойства. Интересными являются подложки из только что расщепленной слюды. Они имеют атомарно гладкую поверхность и широко используются в LB-экспериментах самостоятельно и для изготовления атомарно плоских Аu-поверхностей.

Известны две разновидности метода переноса монослоев с границы раздела вода-воздух на твердую подложку. Первый, наиболее распространенный вариант – вертикальное осаждение был впервые продемонстрирован Блоджетт и Лэнгмюром. Они показали, что монослой амфифильного вещества может быть осажден с границы раздела вода–воздух посредством вертикального смещения пластины (рис. 3.24).

Рис. 3.24. Устройство для получения многослойных пленок методом Ленгмюра-Блоджетт (а) и схема их формирования (б)

Когда подложка двигается через монослой на границе вода–воздух, монослой может быть перенесен в процессе всплывания (подъема вверх) или погружения (опускания вниз). Монослой
обычно переносится в процессе всплывания, если поверхность подложки гидрофильная. Если же поверхность подложки гидрофобная, монослой можно будет перенести в процессе погружения, так как гидрофобные алкильные цепочки взаимодействуют с поверхностью. Если процесс осаждения начинается с гидрофильной подложки, она становится гидрофобной после осаждения первого монослоя, и, таким образом, второй монослой будет перенесен при погружении. Этот способ является наиболее общим способом формирования многослойных пленок для амфифильных молекул, в которых головные («head ») группы являются сильно гидрофильными (- СООН, - РО 3 Н 2 и др.), а другой конец («хвост») – является алкильной цепочкой.

Этот процесс может быть повторен для добавления следующего слоя. Данный тип осаждения Блоджетт назвала Y -типом осаждения , а пленки – Y -пленками . Такие пленки обладают либо гидрофобной, либо гидрофильной поверхностью в зависимости от направления, в котором подложка в последний раз проходила через монослой. Однако если гидрофобная поверхность (например, поверхность чистого кремния) проходит из воздуха в воду, гидрофобные концы свяжутся с поверхностью.

Можно сконструировать устройство для перемещения подложки из непокрытой пленкой части воды и погружения ее в покрытую пленкой область воды, создавая, таким образом, последовательность «голова» – «хвост» слоев на подложке. Этот метод называется осаждением Х-типа, а пленки, состоящие из одинаково ориентированных монослоев, называют Х-пленками . Существенным здесь является следующее:

· во-первых, этот метод осаждения легко контролируется;

· во-вторых, толщина пленки точно определяется длиной молекулы;

· и наконец, осаждение Х-типа является нецентросимметричным, что очень важно для устройств нелинейной оптики.

Для сильно гидрофильных головных групп этот метод осаждения является наиболее стабильным, так как взаимодействуют соседние монослои: гидрофобный с –гидрофобным или гидрофильный с гидрофильным. (рис.3.25). Судя по интерференционным полосам, такие пленки могут включать сотни монослоев.

Рис. 3.25. Схематическое изображение пленок Y-, X- и Z-типа (а)

Последовательно нанесенные монослои, по-видимому, не обязательно обладают фиксированной ориентацией. В ставшем классическим исследовании надстроенных X- и Y-пленок стеарата бария с помощью рентгеновских лучей Эхлерт пришел к выводу, что внутренняя ориентация в пленках обоих типов одинакова . Предполагается, что Y- структура более стабильна.

Пленки, которые могут быть сформированы только в процессе погружения, как правило, являются пленками Х-типа. Осаждение происходит по третьему типу, когда пленки формируются только при подъеме (пленки Z-типа).

Существуют варианты, в которых головные группы не являются явно гидрофильными (такие как - СООМе), или когда алкильная цепочка заканчивается слабополярной группой (например, - NO 2). В обоих случаях взаимодействие между двумя соседними монослоями является «гидрофильный-гидрофобный», и поэтому эти слои являются менее стабильными, чем в случае систем Y-типа. Отметим, однако, что осаждение Х-типа относительно неполярных амфифильных материалов, таких как сложные эфиры, дает упорядоченные пленки, в то время как осаждение Y-типа является патологическим. Кроме того, осаждение X- и Z-типов является нецентросимметричным, и потому важно в случае NLO-применений (нелинейная оптика). Наконец, следует отметить, что осаждение Х-, Y-, и Z-типов не обязательно приведёт к образованию плёнок Х-, Y-, и Z-типов.

В связи с этим следует ввести понятие коэффициента передачи. Как было уже замечено Блоджетт, количество амфифилей, которое может быть осаждено на стеклянную поверхность, зависит от нескольких факторов. Коэффициент передачи определяется как отношение A/A s , где A s – площадь подложки, покрытая монослоем, a Ai – уменьшение площади, занятой этим монослоем на границе раздела вода–воздух (при постоянном давлении). Идеальная пленка Y-типа – это многослойная система с постоянным

коэффициентом передачи, равным единице в обоих случаях осаждения (при движении подложки вверх и вниз). Идеальная пленка Х-типа может быть определена соответственно как слоистая система, в которой коэффициент передачи всегда равен единице при погружении и нулю при подъеме. На практике имеются отклонения от идеальных формулировок
.

Органические слои переносятся с границы раздела жидкость–газ на твердую поверхность подложки при вертикальном погружении или подъеме (рис. 3.26). Как было показано ранее, органические молекулы, которые используются при таком осаждении, состоят из двух типов функциональных групп: один конец гидрофильный, например, гидрокарбонатная цепочка, содержащая кислотную или спиртовую группу, растворимую в воде, и другой конец гидрофобный, содержащий, например, нерастворимые гидрокарбонатные группы. В результате молекулы формируют пленку на поверхности воды с гидрофильными концами со стороны воды и с гидрофобными концами со стороны воздуха. Далее такая пленка может быть сжата движущимся барьером до формирования непрерывного монослоя на поверхности жидкости.

Рис. 3.26. Схематическое изображение метода Лэнгмюра-Шайфера

При движении твердой подложки с определенной скоростью, задаваемой редуктором, органическая пленка прилипает к поверхности твердой подложки, проходя через границу раздела воздух–вода. Так, если стеклянную пластинку поднимать через монослой стеарата бария на воде, то к пластинке прилипает пленка, гидрофобная поверхность которой ориентирована наружу. Поверхность подложки, покрытая пленкой, гидрофобна, причем в значительно большей степени, чем поверхность самого стеарата бария. Если затем пластинку погружать обратно через поверхность, покрытую пленкой, то на ней «спиной к спине» осаждается второй слой.

Несмотря на кажущуюся простоту, изготовление многослойных пленок LB-методом не является простым, легко воспроизводимым процессом. Необходим тщательный кон

троль за мельчайшими деталями изготовления пленок (атмосферное давление, температура, влажность, наличие загрязнений в воздухе и др.

Другой метод создания LB -многослойных структур – горизонтальный метод подъема (Schaefer s method ), «горизонтальный лифт» который был разработан Лэнгмюром и Шайфером в 1938г. Метод Шайфера полезен для осаждения очень твердых (жестких) пленок. В этом случае сначала формируется сжатый монослой на границе раздела вода–воздух (рис. 3.26, а). Затем плоская подложка располагается горизонтально на пленку монослоя (рис. 3.26, б, в). Когда эта подложка поднимается вверх и отделяется от поверхности воды, монослой переносится на подложку (рис.3.26, г), сохраняя, теоретически, такое же направление молекул (Х-тип).

Однако пока нет публикаций о каких-либо успехах в этом направлении. Можно ожидать, что монослои полимерных амфифильных материалов – хорошие кандидаты для горизонтального осаждения из-за их высокой вязкости.

Как только практические проблемы будут решены, метод Шайфера найдет широкое применение благодаря своим существенным преимуществам. Первое преимущество состоит в том, что скорость горизонтального осаждения не уменьшается с увеличением вязкости пленки, и поэтому можно использовать полимерные пленки, которые дают термически стабильные монослои. Второе достоинство – формирование нецентросимметричных многослойных пленок X- типа, которые могут быть использованы в различных областях применения. Третье, наиболее важное пока преимущество, – это возможность конструировать органические сверхрешетки .

Под сверхрешетками мы понимаем плотноупакованные, упорядоченные, трехмерные молекулярные образования, которые проявляют новые физические свойства и создаются повторением процессов осаждения мономолекулярных слоев различных типов органических молекул.

Этот способ создания материалов на молекулярном уровне (молекулярная инженерия) представляет интерес, так как позволяет изготовить сверхрешетки с различными функциональными возможностями. Такие сверхрешетки могут быть использованы для конструирования молекулярных интегральных приборов, так как различные слои могут выполнять различные функции, такие, как усиление, оптическая обработка, электронная передача и др.

Несмотря на высокие потенциальные возможности рассмотренных методов они не нашли в настоящее время широкого применения из-за того, что LB-пленки не могут пока конкурировать с материалами, созданными на основе традиционных методов. Кроме того, остается открытым вопрос о термической и долговременной стабильности этих пленок.

© М.В. Ковальчук, В.В. Клечковская, Л.А. Фейгин

Молекулярный конструктор
Ленгмюра-Блоджетт

М.В. Ковальчук, В.В. Клечковская, Л.А. Фейгин

Михаил Валентинович Ковальчук, член-корреспондент РАН, директор Института кристаллографии, директор Института синхротронных исследований РНЦ “Курчатовский институт”.

Вера Всеволодовна Клечковская, д.ф.-м.н., заведующая лабораторией электронографии.

Лев Абрамович Фейгин, д.ф.-м.н., профессор, главный научный сотрудник лаборатории малоуглового рассеяния.

Физическое материаловедение как область знания возникло в 30-х годах ХХ в. Техника бурно развивалась (в частности, для разработки новых видов вооружения), и понадобились принципиально новые материалы, в первую очередь специальные стали и сплавы цветных и черных металлов, керамика различного состава. Изучение свойств и строения металлов и сплавов потребовало приложения физических методов исследования и современного математического аппарата. В итоге их синтеза и родилось физическое металловедение.

Следующий его этап связан с широким внедрением полупроводников, прежде всего монокристаллов кремния и арсенида галлия, в технику. На них держится современная электроника - микроэлектроника, которая определила лицо нынешней цивилизации. А затем возникает принципиально иное - биологическое, или биоорганическое, материаловедение , зарождение которого можно наблюдать с 60-70-х годов прошлого века, когда была открыта двойная спираль ДНК, установлены структуры ряда белковых молекул и других биополимеров. Физика проникла в молекулярную биологию посредством рентгеноструктурного анализа, благодаря чему этот мир стал для исследователя видимым в объеме. И на базе трехмерного видения стала вырисовываться масса интереснейших биоинженерных, биотехнологических идей. Сегодня мы наблюдаем, как плавное развитие биоорганического материаловедения перешло в стадию взрывного роста.

Современное материаловедение, таким образом, - многоплановая область знаний, где одновременно с сохранением основных существующих и востребованных материаловедческих направлений развиваются качественно новые идеи, прежде всего связанные с созданием наноматериалов различной природы и наносистем на их основе.

Вторжение в наномир

В 1959 г. будущий нобелевский лауреат по физике Р.Фейнман прочитал лекцию с аллегорическим названием “Внизу полным-полно места: приглашение войти в новый мир физики, в мир миниатюризации” . В ней Фейнман рассказал о фантастических перспективах, которые сулит изготовление материалов и устройств на атомном или молекулярном уровне. А в 1974 г. на конференции Японского общества точного машиностроения впервые был использован термин “нанотехнология” (автор, японский ученый Н.Танигучи, хотел обратить внимание специалистов на грядущий переход к обработке материалов с ультравысокой точностью, прогнозируя, что к 2000 г. эта точность шагнет в нанометровый интервал ).

В последнее десятилетие приставка “нано” прочно вошла в современный научно-технический обиход. Термины “нанотехнологии”, “наноматериалы” и др. уже не кажутся странными, и нанотехнологии - переход с микро- на наноразмеры при создании устройств и систем, структура которых регулируется в соответствующем масштабе, т.е. в диапазоне размеров атомов, молекул и надмолекулярных образований, - это дело уже не будущего, а настоящего времени.

Наноструктуры, построенные с использованием атомномолекулярных элементов, представляют собой мельчайшие объекты, которые могут быть созданы искусственным путем или выделены из природных материалов. Причем проблема не только в уменьшении размеров конструируемых устройств, но и в особых свойствах, которые присущи нанослоям, нанокристаллам и наночастицам и связаны с так называемым размерным эффектом (критический размер нанообъектов хотя бы в одном измерении не должен превышать десятков нанометров). С этой точки зрения следовало бы рассматривать наноструктуры в качестве особого фазового состояния вещества, так как свойства материалов, образованных структурными элементами с подобными размерами, не идентичны свойствам объемной фазы. Причем изменения характеристик обусловлены не только малостью размеров, но и проявлением квантовомеханических эффектов при доминирующей роли поверхностей раздела.

Исследовательские работы последних 10-15 лет открыли важную роль наноструктур в различных областях науки и техники (физике, химии, материаловедении, биологии, медицине и т.д.). Управляя размерами и формой наноструктур, можно придавать таким материалам совершенно новые функциональные качества, резко отличающиеся от имеющихся у обычных материалов. К наиболее известным объектам таких манипуляций относятся нанопорошки, углеродные нанотрубки, “одноэлектронные” транзисторы, белки, ДНК.

Вообще говоря, все природные материалы и системы построены из нанообъектов, так как именно на уровне молекул природа “программирует” основные характеристики веществ, явлений и процессов. Нанотехнологический подход означает уже целенаправленное регулирование свойств объектов на молекулярном уровне. В идеальном варианте при использовании принципов самоорганизации вещества материалы должны создаваться “снизу вверх”, в отличие от практикуемого до последнего времени подхода к ультраминиатюризации “сверху вниз” (когда мелкие объекты создаются из крупных, например, путем измельчения).

Одна из особенностей второй половины прошлого века - проникновение “широким фронтом” органических материалов, в частности полимерных, в технологии. Накопив знания и громадный опыт в области создания новых полимеров (в том числе биополимеров), химики научились синтезировать “умные” полимерные материалы, реагирующие на различные внешние воздействия желательным образом. Это достигается присоединением к основной полимерной цепи различных боковых “привесков”, придающих новому материалу помимо материнских (например, термостойких) другие важные свойства - нелинейнооптические, фотопроводящие и др.

Важнейшая задача нанотехнологии - научиться встраивать органические и/или биоорганические молекулы в различные упорядоченные структуры в качестве новых функциональных элементов, в частности для восприятия изображений, запахов, звуковых и химических сигналов, т.е. для создания различных биосенсоров, в качестве преобразователей сигналов в информационных системах (биокомпьютеров) и для многих других целей.

Сейчас уже ясно, что наиболее перспективно создание органонеорганических нанокомпозитов. Для наноэлектроники оно в какой-то мере подобно формированию сложных микроэлектронных интегральных схем. Так можно построить последовательность из мономолекулярных диэлектрических и проводящих слоев с возможными включениями между ними наночастиц полупроводниковых, металлических, магнитных и др.

Разработка недорогих методов изготовления наноструктур в больших количествах - одно из важнейших направлений исследований, так как нанонаука может добиться реальных успехов лишь тогда, когда предложит экономически выгодные технологии.

Как создать слой прогнозируемой структуры

Одной из наиболее привлекательных технологий для решения такого рода задач оказался метод, разработанный в 30-х годах прошлого столетия И.Ленгмюром и его ученицей К.Блоджетт. Об этом методе на довольно долгий период забыли, но затем, уже после второй мировой войны, вернулись “на новом витке спирали”, чтобы использовать его возможности для конструирования сложных слоистых ансамблей из амфифильных молекул. В последующие годы интерес к пленкам Ленгмюра-Блоджетт (ЛБ-пленкам) лавинообразно возрастал: поток работ был столь велик, что вышел за рамки публикаций в различных научных журналах - стал выходить специальный журнал “Langmuir”. Каждый год проводятся специальные международные конференции “ЛБ”, посвященные целиком тонким организованным пленкам, на многих физических и химических симпозиумах с широкой тематикой обязательно есть разделы, посвященные ленгмюровским монослоям и ЛБ-пленкам. Следует отметить, что в последние 10 лет открылись значительно более широкие возможности ЛБ-техники для получения органонеорганических нанокомпозитов, чем предполагали ее создатели.

Какие же возможности конструирования сложных наносистем дает ЛБ-метод? Ответим на этот вопрос, рассматривая различные этапы процесса формирования слоистой пленки или композита.

Поскольку в журнале “Природа” о методе Ленгмюра-Блоджетт уже писали в период возрождавшегося интереса к нему , напомним лишь главные моменты.

Так называемая ленгмюровская ванна заполняется водой, трижды дистиллированной. На поверхность помещается капля поверхностно-активного вещества в органическом растворителе, который быстро испаряется. Рабочая площадь ванны ограничена подвижными барьерами - с их помощью площадь можно менять. Амфифильные молекулы вещества имеют гидрофобный “хвост” (чаще всего зигзагообразную углеводородную цепочку) и гидрофильную “голову” (например, гидроксильную группу). Благодаря такому строению они не тонут в воде и ориентируются единообразно относительно поверхности - “хвостами” вверх (рис.1, вставка).

Рис. 1. Строение молекулы жирной кислоты и p-А изотерма.
Три участка изотермы отвечают различным степеням уплотнения слоя,
условно обозначенным на рисунке по аналогии с объемными фазами.

Концентрация раствора рассчитывается таким образом, чтобы молекулы исследуемого вещества (после испарения растворителя) плавали свободно. Следующий этап - формирование конденсированного монослоя с помощью подвижного барьера - осуществляется за счет уменьшения рабочей площади ванны. Для характеризации структуры монослоя строят изотерму сжатия (рис.1) - зависимость размера площади, приходящейся на одну молекулу, от поверхностного давления (регистрируется изменяющаяся площадь рабочей поверхности ванны и с помощью весов Вильгельми измеряется соответствующее поверхностное давление). Можно контролировать также вязкость, электростатический потенциал монослоя (при этом один электрод помещается под монослоем, а второй над монослоем, так что по изменению потенциала можно почувствовать, например, переориентацию молекул), трансформацию микроструктуры монослоя (с помощью исследования в микроскопе при отражении света от монослоя под углом Брюстера).

Фазовая диаграмма формируемого монослоя даже для простейшего поверхностно-активного вещества - жирной кислоты - достаточно сложна (рис.2). Изменяются симметрия и параметры элементарных ячеек, взаимные наклоны цепочек в упорядоченных доменах. Но, изучив фазовое состояние монослоя данного вещества, можно понять, в каком диапазоне параметров эксперимента удастся получить монослои с заранее заданной структурой.

Рис. 2. Фазовая диаграмма состояния монослоя арахи(дон?)новой кислоты.

Однако пока наш монослой плавает в ванне, и следующий важный этап - перенос его на твердую подложку. Для этого подложка вертикально погружается в воду через монослой и затем поднимается (метод Ленгмюра-Блоджетт, вертикальный “лифт”, рис.3) или горизонтально касается поверхности (метод Ленгмюра-Шеффера, горизонтальный “лифт”, рис.3,б ). Последовательным переносом монослоев мы можем приготовить многослойную наноразмерную пленку из мономолекулярных (по толщине) слоев, причем в зависимости от способа переноса и типа подложки (гидрофильной или гидрофобной), формируются структуры с различной укладкой молекул в смежных слоях, так называемые X-, Y-, Z-структуры (рис.3,в ).

Рис. 3. Перенос монослоя на твердую подложку вертикальным (а ) и горизонтальным (б ) лифтом
и типы (Х, У, Z) формируемых слоистых структур (в ).

Такая технология позволяет усложнить конструкцию многослойной нанопленки, осаждая последовательно монослои различных веществ, но и это еще не ставит точку в проектировании и строительстве ЛБ-пленок. Где, на каких этапах и каким образом мы можем вмешаться в процесс?

Коктейли из молекул в монослое

Дело в том, что на поверхности воды в ЛБ-ванне можно формировать монослой не только из молекул одного типа поверхностно-активного вещества - ничто не препятствует нам получить смешанный монослой из молекул различных веществ. Так были созданы модели разнообразных биологических липидных мембран, в том числе с включениями белковых молекул.

Структура многокомпонентного монослоя зависит от ряда факторов: взаимного соотношения количества веществ в монослое, соотношения длин главных осей молекул и их строения. Так, при одинаковых длинах главных осей молекул и близком строении длинноцепочечных фрагментов при определенном соотношении концентраций можно получить практически равномерно перемешанный слой. При том же соотношении, но существенно разных длинах цепочек, молекулы каждого сорта будут собираться в самостоятельные домены. На рис.4 приведены фрагменты профилей интенсивности рассеяния электронов на ЛБ-пленках из 10 молекулярных бислоев, существенно различающихся по строению и концентрации, и модели соответствующих структур в монослое. Наблюдается постепенный переход: от структуры с компактным размещением молекул одного вида и редкими вкраплениями молекул другого сорта по границам доменов первых - сначала к смешанным монослоям, где возможно возникновение при определенных соотношениях компонентов упорядоченной двухфазной структуры, а затем - к кристаллической доменной структуре второго компонента монослоя.

Рис. 4. Профили электронной дифракции от двухкомпонентных ЛБ-пленок из монослоев
с различным соотношением диметилфосфатидилхолина (ДПФХ) и холестерина (ХОЛ)
и модели структурных элементов соответствующих монослоев. l - длина волны электронов,
q - угол рассеяния.
О методе исследования структуры тонких пленок (“на просвет”) и тонких слоев на поверхности (“на отражение”) (рис.5), использующем дифракцию электронов (методе электронографического структурного анализа), который сейчас оказался наиболее информативным для получения трехмерной информации о структуре тонких ЛБ-пленок, можно прочесть в журнале “Природа” за 1997 год .

Рис. 5. Схема формирования дифракционных картин при облучении образца электронным пучком “на просвет” (а) и “на отражение” (б) (k 0 и k 1 - векторы падающей и рассеянной волны соответственно, g 1 , g 2 - вектора рассеяния).
Здесь обратим внимание на то, что особенности используемых в ЛБ-технологии молекул, единообразно ориентирующихся на водной поверхности “хвостами” вверх, и сам способ формирования монослоя (равномерным поджатием) приводят к образованию текстуры (ориентированного поликристалла, у которого одна из осей перпендикулярна подложке). Если такую структуру перенести на подложку и получить от нее дифракционную картину, то при падении пучка электронов на пленку под прямым углом мы увидим кольцевую картину, которая соответствует двумерной решетке в плоскости слоя. Но более ценными для полного представления о структуре оказываются дифракционные картины, полученные при наклоне образца относительно электронного луча, когда у текстур выявляется упорядоченность и в третьем направлении (рис.6). По таким картинам можно провести полное структурное определение: установить симметрию, найти параметры элементарной ячейки кристалла и расположение в ней каждого атома. Если же в укладке молекул в конденсированном монослое имеются нарушения (отклонения от кристаллической упаковки), то на электронограммах от текстур четкие “дужки” будут размываться и по характеру и местоположению этих “размытий” можно оценить степень и тип нарушений в укладке молекул .

Рис. 6. Электронограмма от ЛБ-пленки холестерина, полученная при наклоне образца по отношению к электронному пучку на угол в 60° (а ), структура холестерина (б ). Параметры элементарной ячейки: a = 14.17 A, b = 34.21 A, c = 10.48 A; a = 94.64°, b = 90.67°, g = 96.32°.
Что же, теперь мы исчерпали все возможности конструирования наносистем методом Ленгмюра, планируя дизайн слоистых гетероструктур из различных монослоев, в том числе многокомпонентных, и перенося их разными способами? Как оказалось, нет. Интерес исследователей обратился в первую очередь к водной фазе. Что будет, если ее модифицировать?

Подключим к работе воду

Чтобы заставить воду служить активным рабочим элементом, будем менять ее рН (кислотность), растворять в ней различные вещества, т.е. используем водную субфазу для проведения реакций взаимодействия монослоя с новыми ионами и молекулами.

Величина рН раствора играет очень важную роль: от нее зависит активизация гидрофильных “голов” молекул, погруженных в субфазу. Продемонстрируем влияние состава субфазы на простейшем примере: растворим в воде под монослоем жирной кислоты соль - Рb(NО 3 ) 2 . В результате диссоциации в субфазе появятся ионы свинца, которые могут присоединиться к карбоксильным группам молекул поверхностно-активного вещества (рис.7), и при переносе на подложку мы получим уже не пленку жирной кислоты, а пленку ее соли. Так, используя субфазу, можно химически модифицировать монослой. Причем операция с субфазой, содержащей ионы металлов, в итоге дает возможность получить в зависимости от валентности ионов слои металлов (по толщине в один и более атомов), внедренные в органическую матрицу (которая обычно бывает диэлектрической). Если растворять соли редкоземельных элементов (например, гадолиния), получим прослойки с магнитным материалом и т.д. Процент поверхностно-активного вещества, участвовавшего во взаимодействии с ионами металла, зависит от рН раствора.

Рис. 7. Схематичное представление формирования монослоя металла под слоем жирной кислоты.

Таким же методом можно модифицировать монослои, присоединяя к ним из субфазы не только ионы металлов, но и белковые молекулы, нуклеиновые кислоты и т.д. Причем для формируемой структуры очень важны не только само вещество, из которого строится монослой на границе раздела вода-воздух, и “участник” из субфазы, но и их взаимодействие. Поместим в субфазу ДНК, а на поверхности сформируем монослой октадециламина или диметилалиламина. В результате получим ЛБ-пленку с включением между липидными слоями расплетенной (в первом случае) или спиральной (во втором) ДНК.

Итак, мы выбирали молекулы вещества, варьировали среду, на которой создается монослой. Остался еще один незадействованный фактор - атмосфера над поверхностью ванны. Что будет, если и ее привлечь к работе?

Воздушный десант

Рассмотрим такой пример. На поверхности имеем монослой стеариновой кислоты, а в субфазе - ионы металла. Ограничим воздушный объем над ванной и создадим в нем определенную концентрацию паров H 2 S (рис.8). Часть молекул газа растворится в воде, таким образом субфаза обогатится анионами серы. Тогда между катионами металла и анионами серы будет протекать химическая реакция, в результате которой могут образоваться кристаллы сульфида.

Рис. 8. Схема установки для роста нанокристаллов неорганических сульфидов in situ в ленгмюровской ванне.

Упорядоченный ленгмюровский монослой (структурной организацией которого, как помним, мы можем в определенных границах управлять) с присоединенными ионами металла - хорошая основа-подложка для зародышеобразования неорганических кристаллитов. Если подобрать условия эксперимента так, что активные группы молекул монослоя вблизи поверхности раздела создадут решетку, близкую по параметрам к решетке соответствующего сульфида, и обеспечить малую скорость поступления ионов S –2 в зону реакции (чтобы избежать спонтанного образования кластеров), то нанокристаллы сульфида будут расти эпитаксиально. Ориентированный рост неорганических кристаллов на органической матрице и их морфология важны, если предполагать дальнейшее использование такого рода структур в наноэлектронике. Заметим, что при этом ориентация нанокристаллов сульфида зависит как от структуры монослоя, так и от структуры самого сульфида. Например, на рис.9,a можно видеть электронномикроскопическое изображение наночастиц PbS, выращенных под монослоем стеариновой кислоты, в форме треугольников (кубические кристаллы со структурой NaCl, растут плоскостью (111) параллельно монослою). А на рис.9,б - электронномикроскопическое изображение кристаллитов СdS, выращенных в аналогичных условиях (их решетка также кубическая, с близкими параметрами элементарной ячейки, но относится к другому структурному типу). В этом случае наблюдается дендритный рост.

Рис. 9. Электронномикроскопическое изображение нанокристаллов РbS (вверху ) и CdS (средняя ), выращенных под монослоем стеариновой кислоты в ленгмюровской ванне в течение 3 ч при поверхностном давлении 28 мН/м, температуре 15°С. Электронномикроскопическое изображение наночастицы сульфида кадмия с высоким разрешением (внизу ). На вставках представлены электронограммы от тех же объектов.
Процесс применения структурированной органической матрицы для синтеза и выращивания неорганических кристаллов получил название “биомиметика”, что означает подражание живой природе. Материалы - органонеорганические нанокомпозиты, полученные таким способом, в зарубежной литературе именуют керамикой или биокерамикой.

В природе биоминерализация представляет собой процесс образования и роста неорганических кристаллов на органических тканях, в результате которого в живых организмах формируются кости, зубы, защитные панцири и т.д. Зарождение кристаллов происходит на биополимерной матрице, которая самоорганизуется в систему ориентированных ячеек, волокон или плоскостей и осуществляет биологический контроль за ростом кристаллов. Основные результаты использования принципов биоминерализации для выращивания кристаллов и тонких пленок, один из примеров которого мы только что рассмотрели, обобщены в книге Дж.Фендлера и ряде обзоров .

Исследования процессов биоминерализации важны для разработки принципиально новых технологий получения высокодисперсных и тонкопленочных материалов. Для успешного проведения биоминералогического синтеза необходимо ясное понимание природы молекулярного взаимодействия на границе органической и неорганической фаз, а также факторов, влияющих на зародышеобразование кристаллитов и последующий рост неорганической пленки. Существенно, что возможность модификации структуры монослоя на поверхности ЛБ-ванны открывает более широкие возможности при подборе условий для эпитаксиального роста, чем в случае твердых подложек.

Ленгмюровские пленки и нанокомпозиты на их основе уже нашли применение в качестве длинноволновых рентгеновских дифракционных решеток, резистов, газовых сенсоров, рабочих элементов первапорационных мембран (в последнем случае очень важно, что покрытия имеют контролируемую структуру и управляемую толщину), наноразмерных диэлектрических полимерных покрытий и прослоек в различных устройствах и т.д.

Ложка дегтя напоследок

Практически мы рассмотрели все возможные “инструменты” ленгмюровской технологии, с помощью которых можно конструировать гетероструктуру - нанокомпозит сложной слоистой архитектуры. Все выглядит очень привлекательно и действительно перспективно, но на самом деле это правильная, но довольно упрощенная схема. Почему ЛБ-метод еще не внедрен повсеместно? Потому что на кажущемся таким очевидным пути встречаются подводные камни. ЛБ-техника внешне проста и дешева (не нужен сверхвысокий вакуум, высокие температуры и т.п.), однако первоначально требует значительных затрат для создания особо чистых помещений, так как любая пылинка, осевшая даже на одном из монослоев в гетероструктуре - это незалечиваемый дефект. С помощью электронной микроскопии и электронной дифракции мы обнаружили, что присутствующей в воздухе углекислоты достаточно, чтобы на ленгмюровском монослое в ходе рассмотренного выше биомиметического процесса при определенных условиях могли вырасти еще и незапланированные кристаллы гидрокарбоната свинца. Структура монослоя полимерного материала, как выяснилось, существенно зависит от типа растворителя, в котором готовится раствор для нанесения на ванну, и т.д., и т.п.

В заключение следует сказать, что сейчас уже достигнуто понимание принципов, согласно которым можно планировать и осуществлять конструирование и производство наноструктур с помощью ленгмюровской технологии. Однако требуются новые методы исследования характеристик уже изготовленных наноустройств, поскольку наш сегодняшний опыт ограничен моделями, работающими в диапазоне размеров >100 нм. Поэтому мы сможем добиться большего прогресса в проектировании, изготовлении и сборке наноструктур только после того, как глубже поймем закономерности, определяющие физико-химические свойства таких материалов и их структурную обусловленность.

Рассказывая в своей лекции о фантастических перспективах, которые сулит изготовление материалов и устройств на атомном или молекулярном уровне, Фейнман указал, что тогда возникнет необходимость в создании совершенно нового класса рабочей и измерительной аппаратуры, требуемой для обращения со столь малыми, наноразмерными объектами. Предсказанная Фейнманом аппаратура появилась лишь в 80-х годах (сканирующие туннельные и атомно-силовые микроскопы, электронные микроскопы высокого разрешения нового поколения и другие приборы). Теперь исследователи обрели новые “глаза и руки”, необходимые для создания и изучения структуры и свойств таких объектов. Одновременно значительный прогресс в вычислительной технике позволил моделировать характеристики материалов в наномасштабе.

Для исследования ЛБ-пленок, предмета нашего сегодняшнего рассмотрения, традиционно применяется рентгеновская и нейтронная рефлектометрия и дифракция электронов (о которой было несколько слов сказано выше) . Однако дифракционные данные всегда усреднены по области, на которой сфокусирован пучок излучения. Поэтому они дополняются в настоящее время атомно-силовой и электронной микроскопией (при помощи электронной микроскопии высокого разрешения научились рассматривать строение отдельной наночастицы с атомным разрешением, рис.9,в). Наконец, самые последние достижения в структурных исследованиях связаны с запуском синхротронных источников. Стали создаваться станции, в которых совмещаются ЛБ-ванна и рентгеновский дифрактометр, благодаря чему структуру монослоев можно исследовать непосредственно в процессе формирования на водной поверхности. В настоящее время развиваются методики, дающие спектрально-селективную структурную информацию, такие, например, как метод стоячих рентгеновских волн , адаптированный к кристаллическим слоистым системам. Этот метод основан на сочетании рентгеновского эксперимента в условиях дифракции или полного внешнего отражения рентгеновских лучей с регистрацией вторичного характеристического излучения (например, флуоресценции), возбужденного при фотоэлектрическом поглощении падающего рентгеновского пучка. Он удачно объединяет возможности высокоразрешающих структурных методик со спектральной чувствительностью получаемых данных.

Из вышесказанного следует, что нанонаука и развитие нанотехнологий еще находятся на начальной стадии развития, но потенциальные перспективы их широки, методы исследования постоянно совершенствуются. Пустое пространство внизу, о котором говорил Фейнман, постепенно заполняется, и работы впереди - непочатый край.

Литература

1. Ковальчук М.В. Органические наноматериалы, наноструктуры и нанодиагностика // Вестн. РАН. 2003. Т.73. ?5. C.405-411.

2. Feynman R. // Eng. Sci. 1960. V.23. P.22.

3. Taniguchi N. // Proc. Int. Conf. Prog. Eng. Part II. Tokyo, 1974.

4. Левченко Е.Б., Львов Ю.М. Молекулярное зодчество // Природа. 1990. ?3. С.3-11.

5. Клечковская В.В. Дифракция электронов как метод изучения структуры // Природа. 1997. ?7. С.32-40.

6. Вайнштейн Б.К., Клечковская В.В. // Кристаллография. 1994. Т.39. ?2. С.301-309.

7. Fendler J.H. Membrane-mimetic approach to advanced materials. Berlin, 1994.

8. Bunker B.C., Rieke P.C., Tarasevich B.J. et al. // Science. 1994. V.264. P.48-55.

9. Клечковская В.В., Фейгин Л.А. // Кристаллография. 1998. Т.41. ?6. С.975-982.

10. Novikova N., Zheludeva S., Konovalov O., Kovalchuk M. et al. // J. Appl. Cryst. 2003. V.36. P.727-731.

Термин пленки Лэнгмюра-Блоджетт (Langmuir - Blodgett films ) обозначает моно- или многослойные пленки, перенесенные с границы раздела вода–воздух (в общем случае жидкость–воздух) на твердую подложку.

Историческая справка.

История открытия пленки Ленгмюра-Блоджетт начинается с 1774 года с одного из многочисленных увлечений Бенджамина Франклина , выдающегося американского ученого и дипломата.

Франклин в свободное время экспериментировал с масляными пленками на поверхности воды. Ученый был изрядно удивлен, когда выяснилось, что одна ложка масла растекается по поверхности пруда площадью в пол-акра (1акр = 4046,86 м 2 ). Если подсчитать толщину образовавшейся пленки, то окажется, что она не превышает десяти нанометров; иначе говоря, пленка содержит только один слой молекул. Этот факт, однако, был осознан лишь 100 лет спустя.

В 1891 году , занимаясь мытьем посуды на кухне, обнаружила влияние примесей таких как мыло, стеариновая кислота и оливковое масло на поверхностное натяжение жидкостей. Для измерения поверхностного натяжения она разработала «ванну Поккельс», которую впоследствии усовершенствованную . Оказалось, что сплошная мыльная пленка заметно понижает поверхностное натяжение. О своих опытах Поккельс написала знаменитому английскому физику и математику лорду Релею, а тот направил письмо в журнал «Nature », снабдив своими комментариями. Затем Релей сам воспроизвел опыты и пришел к следующему выводу: «Наблюдаемые явления выходят за рамки лапласовской теории, и их объяснение требует молекулярного подхода». Иными словами, сравнительно простых - феноменологических - соображений оказалось недостаточно, нужно было привлекать представления о молекулярном строении вещества, тогда еще далеко не очевидные и не общепринятые.

Вскоре на научной сцене появился американский ученый и инженер . Он разработал много новых экспериментальных приемов, которые подтвердили мономолекулярную природу поверхностных пленок и даже позволили определить ориентацию молекул и удельную площадь, ими занимаемую. Более того, был первым, кто начал переносить пленки толщиной в одну молекулу - монослои - с поверхности воды на твердые подложки. Впоследствии его ученица разработала технику многократного переноса одного монослоя за другим, так что на твердой подложке получалась стопчатая структура-этажерка, или мультислой, называемый теперь пленкой Ленгмюра-Блоджетт.


Технология Ленгмюра-Блоджетт .

В начале статьи было сказано, что обозначает термин "пленки Ленгмюра-Блоджетт" , повторимся еще раз: пленки Лэнгмюра–Блоджетт – это моно- или многослойные пленки, перенесенные с границы раздела жидкость–воздух на твердую подложку. В качестве жидкой среды чаще всего используется деионизованная вода, но могут использоваться и другие жидкости, например, глицерин и ртуть. При этом с поверхности воды должны быть удалены все органические примеси через фильтр из активированного угля.

– молекулы, часть которых является гидрофильной, т.е. растворяется, смачиваются или набухают в воде, а другая часть является гидрофобной, т.е. не взаимодействует с водой. Классический пример такого вещества является стеариновая кислота (С 17 Н 35 СOОН), в которой длинный гидрокарбонатный «хвост» (С 17 Н 35 -) является гидрофобным, а основная (головная) карбоксильная группа (- СOОН) является гидрофильной. Так как или амфифильные вещества имеют один гидрофильный конец, а другой конец гидрофобный, они располагаться на границах раздела, таких как воздух–вода или масло-вода.

Уникальным свойством пленок Ленгмюра-Блоджетт является возможность формирования упорядоченной структуры на твердой поверхности из некристаллического материала . Это позволяет переносить монослои на различные подложки. В большинстве случаев используются подложки с гидрофильной поверхностью, когда монослои переносятся в стянутом виде. Можно использовать такие материалы, как стекло, кварц, алюминий, хром, олово (последние в окисленном виде, например, Al 2 O 3 /Al), золото, серебро и полупроводниковые материалы (кремний, арсенид галия и др.).

Известны две разновидности метода переноса монослоев с границы раздела вода-воздух на твердую подложку. Первый, наиболее распространенный вариант – вертикальное осаждение был впервые продемонстрирован и . Они показали, что монослой амфифильного вещества может быть осажден с границы раздела вода–воздух посредством вертикального смещения пластины (рис. 1).

Рис.1. Принципиальная схема получения пленок Ленгмюра–Блоджетт.

Когда подложка двигается через монослой на границе вода–воздух, монослой может быть перенесен в процессе всплывания (подъема вверх) или погружения (опускания вниз). Монослой обычно переносится в процессе всплывания, если поверхность подложки гидрофильная. Если же поверхность подложки гидрофобная, монослой можно будет перенести в процессе погружения, так как гидрофобные алкильные цепочки взаимодействуют с поверхностью. Если процесс осаждения начинается с гидрофильной подложки, она становится гидрофобной после осаждения первого монослоя, и, таким образом, второй монослой будет перенесен при погружении. Этот способ является наиболее общим способом формирования многослойных пленок для амфифильных молекул, в которых головные группы являются сильно гидрофильными (- СООН, - РО 3 Н 2 и др.), а другой конец («хвост») – является алкильной цепочкой.

Второй метод создания пленок Ленгмюра-Блоджетт– горизонтальный метод подъема , «горизонтальный лифт» который был разработан и Шайфером в 1938г. Метод Шайфера полезен для осаждения очень твердых (жестких) пленок. В этом случае сначала формируется сжатый монослой на границе раздела вода–воздух (рис.2,а). Затем плоская подложка располагается горизонтально на пленку монослоя (рис.2,б,в). Когда эта подложка поднимается вверх и отделяется от поверхности воды, монослой переносится на подложку (рис.2,г), сохраняя,теоретически, такое же направление молекул. Рис. 2. Схематическое изображение метода Лэнгмюра-Шайфера

Основы современных представлений о мономолекулярных пленках были заложены в работах А. Покельс и Рэлея в конце XIX – начале XX веков.

Исследуя явления происходящие на водной поверхности при загрязнении ее маслом Покельс установила, что значение поверхностного натяжения воды зависит от площади водной поверхности и объема наносимого на поверхность воды масла.

Рэлей, объясняя экспериментальные результаты полученные Покельс, предположил, что при нанесении на водную поверхность достаточно малого объема масла оно самопроизвольно растекается мономолекулярным слоем, а при уменьшении площади поверхности воды до критической молекулы масла образуют, касаясь друг друга, плотно упакованную структуру, что приводит к уменьшению значения поверхностного натяжения воды.

Наибольший вклад в изучение мономолекулярных пленок внес И.Ленгмюр. Ленгмюр был первым, кто занялся систематическим изучением плавающих монослоев на поверхности жидкости. Ленгмюр дал объяснение результатов экспериментов по снижению поверхностного натяжения водных растворов в присутствии поверностно-активных веществ, в 1917г. Разработал конструкцию прибора для прямого измерения внутреннего давления в монослое (весы Ленгмюра) и предложил новый экспериментальный метод для изучения мономолекулярных слоев. Ленгмюр показал, что многие нерастворимые в воде амфифильные вещества, представляющие собой полярные молекулы органических веществ содержащих гидрофильную часть – “голову” и гидрофобную часть – “хвост”, способны растекаясь по водной поверхности мономолекулярным слоем снижать ее поверхностное натяжение. Изучая зависимость поверхностного давления (поверхностное давление в монослое – отношение силы межмолекулярного отталкивания противодействующей сжатию пленки, к единичной длине монослоя (Н/м)) от площади монослоя, Ленгмюр обнаружил существование различных фазовых состояний монослоя.

Мономолекулярные пленки нерастворимых амфифильных веществ на поверхности жидкости получили название – Ленгмюровские пленки.

В начале 30-х годов К.Блоджетт осуществила перенос мономолекулярных пленок нерастворимых жирных кислот на поверхность твердой подложки, получив таким образом мультислойные пленки.

Подход Блоджетт, основанный на методике Ленгмюра, получил название технологии Ленгмюра-Блоджетт, а полученные таким способом пленки – пленки Ленгмюра-Блоджетт.

Рассмотрим двухфазную систему “газ-жидкость”.

Молекулы жидкости, находясь в объеме фазы, испытывают действие сил притяжения (когезии) со стороны окружающих молекул. Эти силы уравновешивают друг друга и равнодействующая их равна нулю. Молекулы, находящиеся на поверхности раздела “воздух-вода”, испытывают со стороны граничащих фаз действие разных по величине сил. Сила притяжения единицы объема жидкости много больше, чем единицы объема воздуха. Таким образом, равнодействующая сила, действующая на молекулу на поверхности жидкости, направлена внутрь объема жидкой фазы, сокращая площадь поверхности до минимально возможного значения при данных условиях.

Для увеличения поверхности жидкости нужно совершить определенную работу по преодолению внутреннего давления жидкости.

Увеличение поверхности сопровождается увеличением поверхностной энергии системы – энергии Гиббса. Бесконечно малое изменение поверхностной энергии Гиббса dG с бесконечно малым изменением поверхности dS при постоянстве давления p и температуры T дается выражением:

Где - поверхностное натяжение. Таким образом, поверхностное натяжение

=(G/S)| T,p,n = const,

где n – число молей компонентов.

Энергетическое определение: поверхностное натяжение – есть удельная свободная поверхностная энергия Гиббса. Тогда поверхностное натяжение равно работе затраченной на образование единицы поверхности (Дж/м 2).

Силовое определение: поверхностное натяжение – это сила, на поверхности по касательной к ней и стремящаяся сократить поверхность тела до минимально возможной при данном объеме и условиях (Н/м).

[Дж/м 2 = Н*м/м 2 = Н/м]

Согласно второму закону термодинамики, энергия Гиббса системы самопроизвольно стремиться к минимальному значению.

С увеличением температуры значение поверхностного натяжения границы раздела “газ-жидкость” уменьшается.

Рассмотрим поведение поверхностного натяжения на границе раздела фаз “газ-жидкость” в присутствии поверхностно-активного вещества (ПАВ).

Вещества, присутствие которых на границе фаз приводит к уменьшению значения поверхностного натяжения, называются ПАВ.

ПАВ имеют несимметричное строение молекулы, которая состоит из полярных и неполярных групп. Полярная группа обладает дипольным моментом и имеет сродство к полярной фазе. Полярными свойствами обладают группы –COOH, –OH, –NH 2 , –CHO и др.

Неполярная часть молекулы ПАВ представляет собой гидрофобную углеводородную цепь (радикал).

Молекулы ПАВ самопроизвольно образуют ориентированный монослой на поверхности раздела фаз в соответствии с условием уменьшения энергии Гиббса системы: полярные группы располагаются в водной (полярной) фазе, а гидрофобные радикалы вытесняются из водной среды и переходят в менее полярную фазу – воздух.

Молекулы ПАВ, в особенности их углеводородные радикалы, находясь на границе раздела “воздух-вода”, слабее взаимодействуют с молекулами воды, чем молекулы воды друг с другом. Таким образом, суммарная стягивающая сила на единицу длинны уменьшается приводя к уменьшению значения поверхностного натяжения по сравнению с чистой жидкостью.

В состав установки для изучения пленок Ленгмюра и получения пленок Ленгмюра-Блоджетт входят следующие основные блоки:

    емкость, в которой находится жидкость (субфаза), называемая ванной,

    поверхностные барьеры, движущиеся встречносогласованно по краям ванны,

    электронные весы Вильгельми, для измерения величины поверхностного давления в монослое,

    устройство перемещения подложки.

Сама ванна обычно изготавливается из политетрафторэтилена (фторопласта), что обеспечивает химическую инертность и предотвращает возможность утечки субфазы. Материалом для изготовления барьеров может также быть гидрофобный фторопласт, либо иной химически инертный материал.

Термостабилизация осуществляется циркуляцией воды по системе каналов находящихся под дном ванны.

Установка располагается на виброзащитном основании в специализированном помещении с искусственным климатом - “чистая комната”. Все используемые химические реактивы должны иметь высшую степень чистоты.

Для измерения поверхностного давления в монослое в современных установках Ленгмюра-Блоджетт используется датчик поверхностного давления – электронные весы Вильгельми.

Действие датчика основано на принципе измерения усилия необходимого для компенсации воздействия на пластинку Вильгельми силы поверхностного давления в монослое на границе раздела “субфаза-газ”.

Рассмотрим силы действующие на пластинку Вильгельми.

W, l, t – ширина, длинна и толщина пластинки Вильгельми соответственно; h – глубина погружения в воду.

Результирующая сила, действующая на пластинку Вильгельми, состоит из трех составляющих: Сила=вес-сила Архимеда+поверхностное натяжение.

F=glwt-’ghwt+2(t+w)cos ,

где ,’ – плотность пластинки и субфазы соответсвенно, - контактный угол смачивания, g – ускорение свободного падения. Материал пластинки Вильгельми выбирается таким образом, чтобы =0.

Поверхностное давление – есть разность между силой действующей на пластинку погруженную в чистую воду и силой действующей на пластинку погруженную в воду, поверхность которой покрыта монослоем:

где ’ – поверхностное натяжение чистой воды. Для пластинки Вильгельми характерно t<

F/2t=mg/2t [Н/м],

где m – измеряемая весами Вильгельми величина.

Особенностью метода Ленгмюра-Блоджетт является то, что сплошной упорядоченный мономолекулярный слой, предварительно формируется на поверхности субфазы и впоследствии переносится на поверхность подложки.

Формирование упорядоченого монослоя на поверхности субфазы происходит следующим образом. Определенный объем раствора исследуемого вещества в легколетучем растворителе наносится на поверхность субфазы. После испарения растворителя на поверхности воды образуется мономолекулярная пленка, молекулы в которой расположены хаотически.

При постоянной температуре T состояние монослоя описывается изотермой сжатия -А, отражающей соотношение между величиной поверхностного давления барьера и удельной молекулярной площадью А.

С помощью подвижного барьера монослой поджимается до получения сплошной пленки с плотной упаковкой молекул, в которой удельная молекулярная площадь А приблизительно равна площади поперечного сечения молекулы, а углеводородные радикалы ориентированы почти вертикально.

Линейные участки на зависимости -А, отвечающие сжатию монослоя в различных фазовых состояниях, характеризуются величиной А 0 - площадью приходящейся на молекулу в монослое, полученной экстраполяцией линейного участка на ось А ( =0 мН/м).

Следует отметить, что фазовое состояние локализованного на границе раздела “субфаза-газ” монослоя амфифильного вещества (АМФВ) определяется адгезионно-когезионным балансом сил в системе “субфаза-монослой” и зависит от природы вещества и строения его молекул, температуры T и состава субфазы. Выделяют газообразные G, жидкие L1, жидко-кристаллические L2 и твердо- кристаллические S монослои.

Сформированный монослой, состоящий из плотноупакованных молекул АМФВ, переносится на движущуюся вниз-вверх через поверхность воды твердую подложку. В зависимости от типа поверхности подложки (гидрофильная или гидрофобная) и последовательности пересечения подложкой поверхности субфазы с монослоем и без монослоя, можно получать ПЛБ с симметричной (Y) или асимметричной (X, Z) структуры.

Значение поверхностного давления , при котором проводится перенос монослоя на подложку, определяется по изотерме сжатия данного АМФВ и соответствует состоянию с плотной упаковкой молекул в монослое. В процессе переноса давление поддерживается постоянным за счет сокращения площади монослоя движущимися барьерами.

Критерием степени покрытия подложки монослоем, является коэффициент переноса k, который определяется по формуле:

где S’, S" - площадь монослоя в момент начала переноса и после окончания переноса соответственно, Sn - площадь подложки.

Для получения однородной по толщине пленки Ленгмюра-Блоджетт, поверхность подложки должна иметь шероховатость Rz<=50нм.

Кэтрин Берр Блоджетт родилась 10 января 1898-го в Скенектади, Нью-Йорк (Schenectady, New York), и была вторым ребенком в семье. Ее отец был патентным поверенным в "General Electric" ("GE"), где, собственно, возглавлял патентный отдел. Его застрелил в его доме грабитель, прежде чем Кэтрин появилась на свет. Компания "GE" предложила 5 тыс. долл. за поимку убийцы. Найденный подозреваемый повесился в тюремной камере в Сейлеме (Salem, NY). Кэтрин, ее брат Джордж (George Jr.) и их мать переехали во Францию (France) в 1901-м.

В 1912-м Блоджетт вернулась в Нью-Йорк, где училась в частной школе, так что смогла получить прекрасное образование, чего были лишены многие девочки в то время. С малых лет Кэтрин показывала свои математические таланты, и впоследствии ей вручили стипендию в колледже Брин-Мор (Bryn Mawr College), где она преуспела в математике и физике. В 1917-м она получила степень бакалавра в колледже.

Решив продолжить свои научные исследования, Блоджетт в рождественские праздники посетила один из заводов "GE", где бывшие коллеги ее отца познакомили ее с химиком Ирвингом Ленгмюром (Irving Langmuir). После экскурсии по его лаборатории Ленгмюр сказал 18-летней Блоджетт, что она должна продолжать приумножать свои знания, чтобы попасть к нему на работу.

Прислушавшись к совету, Кэтрин в 1918-м поступила в Чикагский Университет (University of Chicago), где для своей диссертации выбрала тему "противогаз". В то время во всю бушевала Первая мировая, и войска особенно нуждались в защите от отравляющих веществ. Блоджетт удалось установить, что почти все ядовитые газы могут быть абсорбированы молекулами углерода. Ей был всего 21 год, когда она опубликовала научные материалы о противогазах в журнале "Physical Review".

В 1924-м Блоджетт была включена в программу по подготовке докторов философии в области физики. Она написала свою диссертацию о поведении электронов в ионизированных парах ртути. Долгожданную степень доктора Кэтрин получила в 1926-м. Как только она стала магистром, ее тут же приняли в корпорацию "GE" в качестве научного сотрудника. Приставленная к Ленгмюру, Блоджетт вместе с ним работала над созданием мономолекулярных пленок, предназначенных для покрытия поверхности воды, металла или стекла. Эти специальные пленки были масляными и могли храниться слоями толщиной всего в несколько нанометров.

В 1935-м Кэтрин разработала метод распространения мономолекулярных пленок по одной. Она использовала модифицированный стеарат бария для покрытия стекла в 44 мономолекулярных слоя, что позволило повысить его пропускаемость более чем на 99%. Так было создано "невидимое стекло", ныне называемое пленкой Ленгмюра-Блоджетт.

За время своей карьеры Блоджетт получила восемь патентов США и опубликовала более 30 научных статей в различных журналах. Она изобрела метод адсорбционной очистки ядовитых газов, противообледенительную систему для крыльев самолета и улучшила такой вид военной маскировки, как дымовая завеса.

Кэтрин никогда не была замужем. Она долгие годы жила счастливо в "бостонском браке" (лесбийских отношениях) с Гертрудой Браун (Gertrude Brown), представительницей старинного рода Скенектади. После Браун Блоджетт жила с Элси Эррингтон (Elsie Errington), директрисой школы для девочек. Кэтрин увлекалась театром, сама играла в спектаклях, любила садоводство и астрономию. Она собирала антиквариат, играла в бридж с друзьями и писала забавные стишки. Блоджетт умерла в своем доме 12 октября 1979-го.