Методика расчета тепловой энергии на отопление. Удельный расход тепловой энергии на отопление здания: знакомство с термином и смежными понятиями 1 расход теплоты на отопление жилых зданий


В.И. Ливчак , к.т.н., член президиума НП «АВОК»

В связи с изменениями, утвержденными постановлением Правительства РФ от 9 декабря 2013 г. № 1129, к правилам определения класса энергетической эффективности многоквартирных домов (МКД), утвержденных постановлением Правительства Российской Федерации от 25 января 2011 г. № 18, и определением в показателей годового электропотребления МКД на общедомовые нужды, появилась возможность установить базовые и нормируемые с 2016 г. (по постановлению Правительства РФ № 18) показатели удельного годового энергопотребления МКД на отопление, вентиляцию, горячее водоснабжение, включая электроснабжение в части расхода электрической энергии на общедомовые нужды.

Обоснование базовых показателей удельного годового теплопотребления МКД на отопление, вентиляцию и горячее водоснабжение для всех регионов России, принимая за основу таблицу 9 Нормируемый удельный расход тепловой энергии на отопление и вентиляцию жилых зданий за отопительный период СНиП 23-02-2003* и сведения о нормируемом расходе горячей воды из СП 30.13330.2012 приведены в .

Базовое годовое теплопотребление
на отопление и вентиляцию

Показатели табл. 9 СНиП 23-02-2003, относящиеся к многоквартирным домам, пересчитываются с размерности в кДж на Вт·ч - принятой в ГОСТе 31427-2010. Но в таблице приводятся значения нормируемого удельного расхода тепловой энергии на отопление и вентиляцию, отнесенного на 1 м 2 общей площади квартир и к градусо-суткам отопительного периода (ГСОП), вследствие большого многообразия климатических условий нашей страны. Для того, чтобы складывать этот расход с удельным расходом тепловой энергии на горячее водоснабжение, в сравнении с суммой которых в соответствии с постановлением № 18 устанавливается класс энергетической эффективности зданий , его надо перевести в размерность последнего - кВт·ч/м 2 .

При этом для выбранного региона строительства неправильно проводить умножение нормируемого значения из табл. 9 на ГСОП в связи с тем, что с повышением ГСОП во столько же раз не увеличивается величина удельного расхода тепловой энергии на отопление, из-за того что теплопотери через наружные ограждения, на компенсацию которых расходуется отопление, не могут увеличиваться во столько же раз, во сколько растет ГСОП, потому что согласно табл. 4 того же СНиП с повышением ГСОП возрастает и нормируемое сопротивление теплопередаче этих ограждений. Кроме того, в тепловом балансе здания наряду с составляющими, зависящими от изменения температуры наружного воздуха (теплопотери через наружные ограждения и на нагрев воздуха, инфильтрующегося через оконные проемы), входят внутренние (бытовые) теплопоступления, которые не зависят от разных климатических условий регионов и практически постоянны для всех регионов в диапазоне широт 45-60°.

В связи с изложенным, из-за приведенных выше обстоятельств базовые удельные годовые расходы тепловой энергии на отопление и вентиляцию, отнесенные к градусо-суткам нормативного отопительного периода для каждого региона строительства, должны пересчитываться с рассчитанным в региональным коэффициентом пересчета по следующей формуле:

q от+вент. год.баз = θ эн/эф. баз · ГСОП · к рег. ·10 -3 ,

где: q от+вент. год.баз - региональный базовый удельный годовой расход тепловой энергии на отопление и вентиляцию, кВт·ч/м 2 ;
θ эн/эф. баз - базовый удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к градусо-суткам отопительного периода, Вт·ч/(м 2 ·°С·сут) - то же, что qhreq из табл. 8 и 9 СНиП 23-02-2003, пересчитанный из кДж в Вт·ч;

ГСОП - градусо-сутки отопительного периода, определяемые по формуле (5.2) СП 50.13330.2012;

к рег. - региональный коэффициент пересчета удельного годового расхода тепловой энергии на отопление и вентиляцию при задании показателя базового потребления тепловой энергии в размерности Вт·ч/(м 2 ·°С·сут), следует принимать в зависимости от величины градусо-суток отопительного периода региона строительства для зданий с ГСОП = 3000 °С·сут и ниже к рег. = 1,1; с ГСОП = 4900 °С·сут и выше к рег. = 0,91; с ГСОП = 4000 °С·сут к рег. = 1,0; в интервале 3000-4900 °С·сут - по линейной интерполяции.

Результаты расчетов удельных годовых расходов тепловой энергии на отопление и вентиляцию для многоквартирных домов сведены в нижеприведенную таблицу 1 с сохранением структуры разбивки табл. 9 СНиП 23-02-2003 по этажности, отнеся (для удобства счета) данные по строке 1 к четной величине этажности, для нечетной величины значения будут находиться как средние арифметические между соседними столбцами, и добавив распространенные в небольших городах и поселках многоквартирные 2-х этажные дома. Горизонтальные строки принимаются по табл. 4 того же СНиП, исключив строку с ГСОП=12000°С·сут, поскольку таких городов нет, и добавив для удобства пользования строки с ГСОП = 3000 и 5000 °С·сут.

Эта часть таблицы приводится в соответствии с положением постановления Правительства РФ № 18 , как «в том числе на отопление и вентиляцию отдельной строкой», для возможности сравнения с фактическим теплопотреблением, измеренным теплосчетчиком и пересчитанным с фактического ГСОП за период измерения к нормативному.

Таблица № 1. Нормируемые базовые и устанавливаемые с 1 января 2016 г. показатели удельного годового расхода энергетических ресурсов в многоквартирном доме, отражающие суммарный удельный годовой расход тепловой энергии
на отопление, вентиляцию, горячее водоснабжение, а также на электроснабжение в части расхода электрической энергии на общедомовые нужды, многоквартирных жилых домов, кВт·ч/м 2 .

Наименование удельного

показателя

отопит. периода

Удельный годовой расход энергетических ресурсов в зависимости от этажности здания, кВт·ч/м 2

Нормируемые базовые показатели

q от+вент. год.баз

тепловой энергии

на отопление,

вентиляцию,

горячее водоснабжение

и электроэнергии

на общедомовые нужды,

q от+вент+гв. год.баз + 2,5·q эл.об.дом год.баз

в том числе тепловой энергии на отопление и вентиляцию,

q от+вент. год.2016

тепловой энергии
на отопление, вентиляцию, горячее водоснабжение и электроэнергии на общедомовые нужды,

q от+вент+гв. год.2016 + 2,5·q эл.об.дом год.2016

Одновременно на стадии проектирования по этому показателю устанавливается ожидаемый класс энергетической эффективности проекта здания, поскольку этот параметр в отличие от водо- и электропотребления в меньшей степени зависит от субъективного воздействия жителей. При установлении базовых величин удельного годового расхода тепловой энергии на отопление и вентиляцию многоквартирных домов принято расчетное заселение 20 м 2 общей площади квартир на одного жителя независимо от задания архитектора.

Исходя из этого приняты нормативный воздухообмен в квартирах 30 м 3 /ч на человека и удельные внутренние теплопоступления 17 Вт/м 2 жилой площади. При системе вентиляции с естественным притоком наружного воздуха через воздухопропускные устройства в окнах или стене система отопления рассчитывается на компенсацию трансмиссионных теплопотерь через наружные ограждения и нагрев наружного воздуха для вентиляции в нормативном объеме и на поддержание внутренней температуры на минимальном комфортном уровне 20°С.

Перед сравнением базовых значений с фактическим теплопотреблением эксплуатируемого здания последнее пересчитывается на воздухообмен в квартирах и удельные внутренние теплопоступления с учетом фактической нормы расселения жителей в конкретном доме.

Базовое годовое теплопотребление на горячее водоснабжение
и электропотребление на общедомовые нужды

В нижней части блока базовых значений этой таблицы приведены суммарные удельные годовые расходы тепловой энергии на отопление, вентиляцию, горячее водоснабжение и электрической на общедомовые нужды. Расчет годового расхода тепловой энергии на горячее водоснабжение выполнен нами с учетом удельной нормы водопотребления из СП 30.13330.2012. В этом СП даны таблицы А.2 и А.3 расчетных (удельных) средних за год суточных расходов воды, в том числе горячей, л/сут, на 1 жителя в жилых домах при расчетной температуре 60°С в месте потребления, в то время как ранее эта температура принималась равной 55°С, а норма водопотребления - средней за отопительный период.

Для определения годового теплопотребления на горячее водоснабжение эти показатели пересчитываются на средние за отопительный период расчетные расходы воды (поскольку их легче сравнить с измеренными) по методике, изложенной в . В соответствии с этой методикой для многоквартирных домов со среднегодовой нормой расхода горячей воды на одного жителя 100 л/сутки и заселенности 20 м 2 жилой площади на человека базовое удельное годовое теплопотребление на горячее водоснабжение составит для центрального региона (z oт.п = 220 суток) - 135 кВт·ч/м 2 ; для региона севера европейской части и Сибири (zoт.п = 250 суток) - 138 кВт·ч/м 2 и для юга европейской части России с учетом z oт.п = 160 суток и повышающего коэффициента 1,15 на потребление воды в III и IV климатических районах строительства согласно СП 30.13330 - 149 кВт·ч/м 2 . Это выше, чем принималось ранее в проекте приказа МРР - 120 кВт·ч/м 2 для всех климатических районов согласно действовавшего тогда СНиП 2.04.01-85*.

Как следует из , годовое электропотребление на искусственное освещение общедомовых помещений многоквартирных домов, нагрузку слаботочных устройств и мелкого силового оборудования (щитков противопожарных устройств, приборов автоматики и учета, очистных устройств мусоропроводов, дверные запирающие устройства, усилители телеантенн коллективного пользования, подъемников для инвалидов), электропотребление лифтами многоквартирных домов, включая схемы управления и сигнализации, освещение кабин лифтов и лифтовых шахт, а также электропотребление насосным оборудованием трубопроводных систем отопления, холодного и горячего водоснабжения, составляет без выполнения энергосберегающих мероприятий для многоэтажных домов, оснащенных лифтом (более 5-ти этажей), - 6 кВт·ч/м 2 , а для малоэтажных домов без лифта - 2 кВт·ч/м 2 общей площади квартир.

При сложении показателей потребления тепловой энергии с электрической, поскольку при выработке последней затраты первичной энергии выше, чем тепловой энергии, вводится коэффициент приведения электрической энергии к тепловой энергии . По данным О.Сеппанена этот коэффициент существенно различается в разных странах (табл. 2), однако наиболее часто он принимается равным 1 для всех видов топлива и 2,5 для электрической энергии.

Таблица №2. Коэффициент использования первичных ресурсов
на электроэнергию в некоторых европейских странах (из )

Примечания.
1 Для удаленных территорий (Канарские острова, Балеарские острова);
2 Большой процент более дешевой гидроэнергетики.

А.Л.Наумов рекомендует в России принимать этот коэффициент по соотношению стоимости электрической и тепловой энергии, который также близок к 2,5. Примем и мы коэффициент приведения электрической энергии к тепловой равным 2,5 при определении суммарного базового годового расхода тепловой энергии на отопление, вентиляцию, горячее водоснабжение и электрической на общедомовые нужды (нижняя часть блока базовых значений табл.1).

Нормируемое с 1 января 2016 г. согласно постановлению
№ 18 Правительства РФ годовое энергопотребление на отопление, вентиляцию,
горячее водоснабжение и общедомовые нужды МКД

В соответствии с постановлением Правительства РФ от 25.01.2011 №18 в редакции от 09.12.2013 г. суммарное годовое энергопотребление на перечисленные нужды многоквартирных домов, построенных, реконструированных или прошедших капитальный ремонт и вводимых в эксплуатацию, должно быть снижено с 1 января 2016 г. на 30% по отношению к базовому уровню. Конкретные значения этих показателей в зависимости от этажности зданий и градусо-суток отопительного периода региона строительства приведены в блоке нормируемые значения с 1 января 2016 г. таблицы 1.

Снижение теплопотребления на отопление и вентиляцию достигается, как показывают расчеты в и испытания на экспериментальных объектах, за счет такого же повышения теплозащиты несветопрозрачных ограждений по сравнению с базовыми значениями табл. 4 СНиП 23-02-2003 или СП 50.13330.2012 (и при этом по толщине утеплителя мы еще будем отставать от скандинавских стран и Дании, где зима в 1,5 раза менее суровая, чем в России) и увеличения сопротивления теплопередаче окон до не менее 1,0 м 2 ·°С/Вт для местностей с более 4000 градусо-суток и 0,8 м 2 ·°С/Вт для остальных.

Для достижения максимальной экономии тепловой энергии в условиях эксплуатации при обеспечении комфортных условий в жилище необходимо, чтобы система отопления каждого дома была оборудована автоматизированным узлом управления (АУУ), позволяющим оптимизировать подачу теплоты на отопление. Должна быть выполнена правильная настройка контроллера АУУ и выбор производительности циркуляционного насоса с учетом установленного запаса в поверхности нагрева отопительных приборов , сопоставив проектную нагрузку системы отопления и рассчитанную в энергетическом паспорте в соответствии со стандартом . Заданный контроллеру температурный график авторегулирования подачи теплоты в зависимости от изменения наружной температуры должен учитывать увеличение доли внутренних теплопоступлений в тепловом балансе дома с повышением температуры наружного воздуха .

Снижение теплопотребления на горячее водоснабжение достигается переносом водонагревателей из ЦТП непосредственно в обслуживаемое здание, за счет чего исключаются потери теплоты внутриквартальными сетями горячего водоснабжения, сокращаются потери теплоты с избыточной циркуляцией из-за повышения гидравлической устойчивости сети и уменьшается расход электроэнергии на перекачку теплоносителя. Также существенное сокращение расхода воды и теплоты для ее нагрева достигается за счет установки квартирных водосчетчиков, что позволяет жителям контролировать уровень потребления воды. Потенциал экономии теплоты на нагрев горячей воды оценивается в 50% по сравнению с базовым.

Возможность снижения электропотребления на общедомовые нужды многоэтажных домов, оснащенных лифтом (более 5-ти этажей), оценивается трехкратным сокращением с 6 до 2 кВт·ч/м 2 , а для малоэтажных домов без лифта - соответственно с 2 до 0,7 кВт·ч/м 2 , за счет осуществления энергосберегающих мероприятий по замене осветительных приборов на более энергоэффективные, применению датчиков движения или автоматического отключения освещения через заданный период времени после включения, использования насосов и вентиляторов с частотно-регулируемым приводом, применением более совершенной программы автоматического управления вызовом лифтов и др.

Сопоставление требований повышения энергетической эффективности МКД,
вытекающих из СНиП 23-02-2003 и постановления Правительства РФ № 18
с программой Энергоэффективное домостроение в г. Москве

Для такого сопоставления воспользуемся таблицей , приведенной в интервью, опубликованном в и представленной в данной статье под № 3.

Таблица № 3. Показатели суммарного удельного годового расхода тепловой энергии на отопление, вентиляцию, горячее водоснабжение, а также на электроснабжение в части расхода электрической энергии на общедомовые нужды для г.Москва (ГСОП = 4511 градусо-суткок от. пер.), кВт·ч/м 2 .

Существ. жилой фонд до 2000г.

Базовые значения на 01.01.2008

Нормируемые значения с 01.10.2010

Нормируемые значения с 01.10.2016

Нормируемые значения с 01.10.2020

По программе Энергоэффективное домостроение

По СНиП 23-02-2003

и постановлению

Правительства РФ № 18 от 25.01.2011г.

В т.ч. на отопление и вентиляцию отдельной строкой

Как видно из таблицы в существующем жилом фонде до резкого повышения требуемого сопротивления теплопередаче наружных ограждений с 2000 г. по Дополнению 3 к СНиП 2.3-79* наблюдается одно и то же значение исходных данных по суммарному удельному годовому расходу тепловой энергии на отопление, вентиляцию, горячее водоснабжение и электрической энергии на общедомовые нужды, основанных на результатах фактических измерений теплопотребления на отопление и вентиляцию МКД в размере 190 кВт·ч/м 2 общей площади квартир, выполненных независимо друг от друга в НП «АВОК» и НИИ «Мосстрой» на разных объектах, и с нашей стороны - расчетных, обоснованных выше, удельных расходов тепловой энергии на горячее водоснабжение 135 кВт·ч/м 2 и электрической на освещение помещений общедомового назначения, на перемещение лифтов и на привод электродвигателей насосов и мелкоштучного оборудования - 15 кВт·ч/м 2 (с учетом пересчета электрических кВт·ч в тепловые с повышающим коэффициентом 2,5). Итого: 190+135+15 = 340 кВт·ч/м 2 .

Далее Москва опережающими темпами на основе Территориальных строительных норм МГСН 2.01-99 , вышедших на 4 года раньше федеральных норм СНиП 23-02-2003, в качестве базового значения удельного годового расхода тепловой энергии на отопление и вентиляцию МКД приняла 95 кВт·ч/м 2 , а на горячее водоснабжение - 110 кВт·ч/м 2 , с учетом некоторого снижения из-за наличия нормативных требований об отказе от ЦТП и переходе теплоснабжения зданий через ИТП, а также частичной реализации оборудования системы водоснабжения квартирными водосчетчиками (215 кВт·ч/м 2 - суммарное значение показателя энергоэффективности), и поставила задачу снижения энергопотребления с 01.10.2010 г. на 25%, а с 01.01.2016 г. всего на 40% по отношению к базовому уровню.

Это большее снижение энергопотребления, чем, если бы за базовое значение принимать требования федеральных норм и придерживаться требований постановления Правительства РФ № 18 от 25.01.2011 г. (нижние две строки табл. 3). Но принятые Москвой на себя повышенные обязательства не противоречат федеральному законодательству, поскольку оно не допускает только снижения уровня региональных требований по сравнению с федеральными, а превышение этого уровня не возбраняется.

Рис. Диаграмма баланса энергопотребления многоквартирного дома.
Обозначения: красный - отопление за вычетом бытовых тепловыделений;
зеленый - вентиляция; синий - горячее водоснабжение; желтый - электроснабжение общедомовое.

Для оценки потенциала воздействия каждой составляющей энергетического баланса МКД в федеральных нормах на базовом уровне и нормируемых требований с 2016 г. составим таблицу 4, а затем для наглядности графическое отражение ее на Предварительно разобьем удельный годовой расход тепловой энергии на отопление и вентиляцию на его составляющие, приняв расчетный воздухообмен в соответствии с СП 60.13330.2012 на одного жителя 30 м 3 /ч или при принятой выше заселенности 20 м 2 общей площади квартиры на человека - 30/20 = 1,5 м3/(ч·м 2). Тогда, расход тепловой энергии на нагрев такого количества наружного воздуха для вентиляции составит:

q вент. год. баз = 0,28·1,5·1,2·1,0·4511·24·10-3 = 54 кВт·ч/м 2 в год.

Соответственно, базовый удельный расход тепловой энергии на отопление как разность теплопотерь через наружные ограждения и внутренних теплопоступлений с понижающим коэффициентом на их неполное использование для условий г.

Москвы будет:

q от. год.баз = q от+вент. год.баз - q вент. год.баз =
= 84 - 54 = 30 кВт·ч/м 2 в год.

А с 2016 г., учитывая, что расход тепловой энергии на нагрев наружного воздуха для вентиляции остается в том же объеме, но теплозащита наружных ограждений повысится, нормируемый удельный расход тепловой энергии на отопление значительно снизится и будет:

q от. год.2016 = 59 - 54 = 5 кВт·ч/м 2 в год.

Таблица № 4 . Баланс годового энергопотребления МКД в 12 и выше этажей в базовых условиях и в соответствии с требованиями на 2016г. в кВт·ч/м 2 и %

Тепловой энергии на

Электрической энергии на общедомовые нужды

Суммарное годовое энергопот-ребление

отопление

вентиляцию

горячее водоснабжение

Базовое, 2007г.

Нормируемое

с 01.01.2016г.

Из табл. 4 и рисунка следует, что основное направление дальнейшего повышения энергетической эффективности МКД - это снижение теплопотребления на вентиляцию и горячее водоснабжение за счет осуществления утилизации тепла вытяжного воздуха и применения тепловых насосов . А пока для обеспечения требований руководства страны по повышению энергетической эффективности зданий необходимо выполнять дополнительное утепление наружной оболочки исходя из вышеприведенных указаний, в том числе и при проведении капитального ремонта, а также осуществлять автоматическое регулирование подачи теплоты на отопление, вентиляцию и горячее водоснабжение по оптимальным графикам и учет тепловой энергии в соответствии с действующим законодательством.

Порядок расчета отопления в жилом фонде зависит от наличия приборов учета и от того, каким способом ими оборудован дом. Существует несколько вариантов комплектации счетчиками многоквартирных жилых домов, и согласно которым, производится расчет тепловой энергии:

  1. наличие общедомового счетчика, при этом квартиры и нежилые помещения приборами учетами не оборудованы.
  2. расходы на отопление контролирует общедомовой прибор, а также все или некоторые помещения оборудованы учетными приборами.
  3. общедомовой прибор фиксации потребления и расхода тепловой энергии отсутствует.

Перед тем как рассчитать количество потраченных гигакалорий, необходимо выяснить наличие или отсутствие контроллеров на доме и в каждом отдельном помещении, включая нежилые. Рассмотрим все три варианта расчета тепловой энергии, к каждому из которых разработана определенная формула (размещены на сайте государственных уполномоченных органов).

Вариант 1

Итак, дом оборудован контрольным прибором, а отдельные помещения остались без него. Здесь необходимо брать во внимание две позиции: подсчет гкал на отопление квартиры, затраты тепловой энергии на общедомовые нужды (ОДН).

В данном случае используется формула №3, которая основана на показаниях общего учетного прибора, площади дома и метраже квартиры.

Пример вычислений

Будем считать, что контроллер зафиксировал расходы дома на отопление в 300 гкал/месяц (эти сведения можно узнать из квитанции или обратившись в управляющую компанию). К примеру, общая площадь дома, которая состоит из суммы площадей всех помещений (жилых и нежилых), составляет 8000 м² (также можно узнать эту цифру из квитанции или от управляющей компании).

Возьмем площадь квартиры в 70 м² (указана в техпаспорте, договоре найма или регистрационном свидетельстве). Последняя цифра, от которой зависит расчет оплаты за потребленную теплоэнергию, это тариф, установленный уполномоченными органами РФ (указан в квитанции или выяснить в домоуправляющей компании). На сегодняшний день тариф на отопление равен 1 400 руб/гкал.


Подставляя данные в формулу №3, получим следующий результат: 300 х 70 / 8 000 х 1 400 = 1875 руб.

Теперь можно переходить ко второму этапу учета расходов на отопление, потраченных на общие нужды дома. Здесь потребуется две формулы: поиск объема услуги (№14) и плата за потребление гигакалорий в рублях (№10).

Чтобы правильно определить объем отопления в данном случае, потребуется суммирование площади всех квартир и помещений, предоставленных для общего пользования (сведения предоставляет управляющая компания).

К примеру, у нас имеется общий метраж в 7000 м² (включая квартиры, офисы, торговые помещения.).

Приступим к вычислению оплаты за расход тепловой энергии по формуле №14: 300 х (1 – 7 000 / 8 000) х 70 / 7 000 = 0,375 гкал.


Используя формулу №10, получаем: 0,375 х 1 400 = 525, где:

  • 0,375 – объем услуги за подачу тепла;
  • 1400 р. – тариф;
  • 525 р. – сумма платежа.

Суммируем результаты (1875 + 525) и выясняем, что оплата за расход тепла составит 2350 руб.

Вариант 2

Теперь проведем расчет платежей в тех условиях, когда дом оснащен общим учетным прибором на отопление, а также индивидуальными счетчиками снабжена часть квартир. Как и в предыдущем случае, подсчет будет проводиться по двум позициям (тепловые энергозатраты на жилье и ОДН).

Нам понадобится формула №1 и №2 (правила начислений согласно показаниям контроллера или с учетом нормативов потребления тепла для жилых помещений в гкал). Вычисления будут проводиться относительно площади жилого дома и квартиры из предыдущего варианта.

  • 1,3 гигакалорий – показания индивидуального счетчика;
  • 1 1820 р. – утвержденный тариф.

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² площади в квартире;
  • 70 м² – метраж квартиры;
  • 1 400 р. – тариф на тепловую энергию.

Как становится понятно, при таком варианте сумма платежа будет зависеть от наличия устройства учета в вашей квартире.

Формула №13: (300 – 12 – 7 000 х 0,025 – 9 – 30) х 75 / 8 000 = 1,425 гкал, где:

  • 300 гкал – показания общедомового счетчика;
  • 12 гкал – количество тепловой энергии, использованной на обогрев нежилых помещений;
  • 6 000 м² – сумма площади всех жилых помещений;
  • 0,025 – норматив (потребление тепловой энергии для квартир);
  • 9 гкал – сумма показателей со счетчиков всех квартир, которые оборудованы приборами учета;
  • 35 гкал – количество тепла, затраченного на подачу горячей воды при отсутствии ее централизованной подачи;
  • 70 м² – площадь квартиры;
  • 8 000 м² – общая площадь (все жилые и нежилые помещения в доме).

Обратите внимание, что данный вариант включает только реальные объемы потребляемой энергии и если ваш дом снабжен централизованной подачей горячей воды, то объем тепла, затраченного на нужды горячего водоснабжения, не учитывается. Это же касается и нежилых помещений: если они отсутствуют в доме, то и в расчет включены не будут.

  • 1,425 гкал – количество тепла (ОДН);


  1. 1820 + 1995 = 3 815 руб. - с индивидуальным счетчиком.
  2. 2 450 + 1995 = 4445 руб. - без индивидуального устройства.

Вариант 3

У нас остался последний вариант, в ходе которого мы рассмотрим ситуацию, когда на доме отсутствует счетчик тепловой энергии. Расчет, как и в предыдущих случаях, проведем по двум категориям (тепловые энергозатраты на квартиру и ОДН).

Выведение суммы на отопление, проведем при помощи формул №1 и №2 (правила о порядке расчета тепловой энергии с учетом показаний индивидуальных учетных приборов или согласно установленным нормативам для жилых помещений в гкал).

Формула №1: 1,3 х 1 400 = 1820 руб., где:

  • 1,3 гкал – показания индивидуального счетчика;
  • 1 400 р. – утвержденный тариф.

Формула №2: 0,025 х 70 х 1 400 = 2 450 руб., где:

  • 1 400 р. – утвержденный тариф.


Как и во втором варианте, платеж будет зависеть от того, оборудовано ли ваше жилье индивидуальным счетчиком на тепло. Теперь необходимо выяснить объем теплоэнергии, которая была израсходована на общедомовые нужды, и выполнять это нужно по формуле №15 (объем услуги на ОДН) и №10 (сумма за отопление).

Формула №15: 0,025 х 150 х 70 / 7000 = 0,0375 гкал, где:

  • 0,025 гкал – нормативный показатель расхода тепла на 1 м² жилой площади;
  • 100 м² – сумма площади помещений, предназначенных для общедомовых нужд;
  • 70 м² – общая площадь квартиры;
  • 7 000 м² – общая площадь (всех жилые и нежилые помещения).

Формула №10: 0,0375 х 1 400 = 52,5 руб., где:

  • 0,0375 – объем тепла (ОДН);
  • 1400 р. – утвержденный тариф.


В результате проведенных подсчетов мы выяснили, что полная оплата за отопление составит:

  1. 1820 + 52,5 = 1872,5 руб. – с индивидуальным счетчиком.
  2. 2450 + 52,5 = 2 502,5 руб. – без индивидуального счетчика.

В приведенных выше расчетах платежей за отопление были использованы данные о метраже квартиры, дома, а также о показателях счетчика, которые могут существенно отличаться от тех, которые есть у вас. Все что вам нужно, это подставить свои значения в формулу и произвести окончательный расчет.

Создавать систему отопления в собственном доме или даже в городской квартире – чрезвычайно ответственное занятие. Будет совершенно неразумным при этом приобретать котельное оборудование, как говорится, «на глазок», то есть без учета всех особенностей жилья. В этом вполне не исключено попадание в две крайности: или мощности котла будет недостаточно – оборудование станет работать «на полную катушку», без пауз, но так и не давать ожидаемого результата, либо, наоборот, будет приобретен излишне дорогой прибор, возможности которого останутся совершенно невостребованными.

Но и это еще не все. Мало правильно приобрести необходимый котел отопления – очень важно оптимально подобрать и грамотно расположить по помещениям приборы теплообмена – радиаторы, конвекторы или «теплые полы». И опять, полагаться только лишь на свою интуицию или «добрые советы» соседей – не самый разумный вариант. Одним словом, без определенных расчетов – не обойтись.

Конечно, в идеале, подобные теплотехнические вычисления должны проводить соответствующие специалисты, но это часто стоит немалых денег. А неужели неинтересно попытаться выполнить это самостоятельно? В настоящей публикации будет подробно показано, как выполняется расчет отопления по площади помещения, с учетом многих важных нюансов. По аналогии можно будет выполнить , встроенный в эту страницу, поможет выполнить необходимые вычисления. Методику нельзя назвать совершенно «безгрешной», однако, она все же позволяет получить результат с вполне приемлемой степенью точности.

Простейшие приемы расчета

Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.

  • Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.

Иными словами, система отопления должна быть способной прогреть определенный объем воздуха.

Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:

Предназначение помещения Температура воздуха, °С Относительная влажность, % Скорость движения воздуха, м/с
оптимальная допустимая оптимальная допустимая, max оптимальная, max допустимая, max
Для холодного времени года
Жилая комната 20÷22 18÷24 (20÷24) 45÷30 60 0.15 0.2
То же, но для жилых комнат в регионах с минимальными температурами от - 31 °С и ниже 21÷23 20÷24 (22÷24) 45÷30 60 0.15 0.2
Кухня 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Туалет 19÷21 18÷26 Н/Н Н/Н 0.15 0.2
Ванная, совмещенный санузел 24÷26 18÷26 Н/Н Н/Н 0.15 0.2
Помещения для отдыха и учебных занятий 20÷22 18÷24 45÷30 60 0.15 0.2
Межквартирный коридор 18÷20 16÷22 45÷30 60 Н/Н Н/Н
Вестибюль, лестничная клетка 16÷18 14÷20 Н/Н Н/Н Н/Н Н/Н
Кладовые 16÷18 12÷22 Н/Н Н/Н Н/Н Н/Н
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется)
Жилая комната 22÷25 20÷28 60÷30 65 0.2 0.3
  • Второе – компенсирование потерь тепла через элементы конструкции здания.

Самый главный «противник» системы отопления — это теплопотери через строительные конструкции

Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:

Элемент конструкции здания Примерное значение теплопотерь
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями от 5 до 10%
«Мостики холода» через плохо изолированные стыки строительных конструкций от 5 до 10%
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) до 5%
Внешние стены, в зависимости от степени утепленности от 20 до 30%
Некачественные окна и внешние двери порядка 20÷25%, из них около 10% - через негерметизированные стыки между коробками и стеной, и за счет проветривания
Крыша до 20%
Вентиляция и дымоход до 25 ÷30%

Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.

Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.

Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:

Самый примитивный способ подсчета — соотношение 100 Вт/м²

Q = S × 100

Q – необходимая тепловая мощность для помещения;

S – площадь помещения (м²);

100 — удельная мощность на единицу площади (Вт/м²).

Например, комната 3.2 × 5,5 м

S = 3,2 × 5,5 = 17,6 м²

Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт

Способ, очевидно, очень простой, но весьма несовершенный. Стоит сразу оговориться, что он условно применим только при стандартной высоте потолков – примерно 2.7 м (допустимо – в диапазоне от 2.5 до 3.0 м). С этой точки зрения, более точным станет расчет не от площади, а от объема помещения.

Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.

Q = S × h × 41 (или 34)

h – высота потолков (м);

41 или 34 – удельная мощность на единицу объема (Вт/м³).

Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:

Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт

Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.

Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.

Возможно, вас заинтересует информация о том, что собой представляют

Проведение расчетов необходимой тепловой мощности с учетом особенностей помещений

Рассмотренные выше алгоритмы расчетов бывают полезны для первоначальной «прикидки», но вот полагаться на них полностью все же следует с очень большой осторожностью. Даже человеку, который ничего не понимает в строительной теплотехнике, наверняка могут показаться сомнительными указанные усредненные значения – не могут же они быть равными, скажем, для Краснодарского края и для Архангельской области. Кроме того, комната - комнате рознь: одна расположена на углу дома, то есть имеет две внешних стенки, а другая с трех сторон защищена от теплопотерь другими помещениями. Кроме того, в комнате может быть одно или несколько окон, как маленьких, так и весьма габаритных, порой – даже панорамного типа. Да и сами окна могут отличаться материалом изготовления и другими особенностями конструкции. И это далеко не полный перечень – просто такие особенности видны даже «невооруженным глазом».

Одним словом, нюансов, влияющих на теплопотери каждого конкретного помещения – достаточно много, и лучше не полениться, а провести более тщательный расчет. Поверьте, по предлагаемой в статье методике это будет сделать не так сложно.

Общие принципы и формула расчета

В основу расчетов будет положено все то же соотношение: 100 Вт на 1 квадратный метр. Но вот только сама формула «обрастает» немалым количеством разнообразных поправочных коэффициентов.

Q = (S × 100) × a × b× c × d × e × f × g × h × i × j × k × l × m

Латинские буквы, обозначающие коэффициенты, взяты совершенно произвольно, в алфавитном порядке, и не имеют отношения к каким-либо стандартно принятым в физике величинам. О значении каждого коэффициента будет рассказано отдельно.

  • «а» - коэффициент, учитывающий количество внешних стен в конкретной комнате.

Очевидно, что чем больше в помещении внешних стен, тем больше площадь, через которую происходит тепловые потери. Кроме того, наличие двух и более внешних стен означает еще и углы – чрезвычайно уязвимые места с точки зрения образования «мостиков холода». Коэффициент «а» внесет поправку на эту специфическую особенность комнаты.

Коэффициент принимают равным:

— внешних стен нет (внутреннее помещение): а = 0,8 ;

— внешняя стена одна : а = 1,0 ;

— внешних стен две : а = 1,2 ;

— внешних стен три: а = 1,4 .

  • «b» - коэффициент, учитывающий расположение внешних стен помещения относительно сторон света.

Возможно, вас заинтересует информация о том, какие бывают

Даже в самые холодные зимние дни солнечная энергия все же оказывает влияние на температурный баланс в здании. Вполне естественно, что та сторона дома, которая обращена на юг, получает определенный нагрев от солнечных лучей, и теплопотери через нее ниже.

А вот стены и окна, обращённые на север, Солнца «не видят» никогда. Восточная часть дома, хотя и «прихватывает» утренние солнечные лучи, какого-либо действенного нагрева от них все же не получает.

Исходя из этого, вводим коэффициент «b»:

— внешние стены комнаты смотрят на Север или Восток : b = 1,1 ;

— внешние стены помещения ориентированы на Юг или Запад : b = 1,0 .

  • «с» - коэффициент, учитывающий расположение помещения относительно зимней «розы ветров»

Возможно, эта поправка не столь обязательна для домов, расположенных на защищенных от ветров участках. Но иногда преобладающие зимние ветры способны внести свои «жесткие коррективы» в тепловой баланс здания. Естественно, что наветренная сторона, то есть «подставленная» ветру, будет терять значительно больше тела, по сравнению с подветренной, противоположной.

По результатам многолетних метеонаблюдений в любом регионе составляется так называемая «роза ветров» - графическая схема, показывающая преобладающие направления ветра в зимнее и летнее время года. Эту информацию можно получить в местной гидрометеослужбе. Впрочем, многие жители и сами, без метеорологов, прекрасно знают, откуда преимущественно дуют ветра зимой, и с какой стороны дома обычно наметает наиболее глубокие сугробы.

Если есть желание провести расчеты с более высокой точностью, то можно включить в формулу и поправочный коэффициент «с», приняв его равным:

— наветренная сторона дома: с = 1,2 ;

— подветренные стены дома: с = 1,0 ;

— стена, расположенные параллельно направлению ветра: с = 1,1 .

  • «d» - поправочный коэффициент, учитывающий особенности климатических условий региона постройки дома

Естественно, количество теплопотерь через все строительные конструкции здания будет очень сильно зависеть от уровня зимних температур. Вполне понятно, что в течение зимы показатели термометра «пляшут» в определенном диапазоне, но для каждого региона имеется усредненный показатель самых низких температур, свойственных наиболее холодной пятидневке года (обычно это свойственно январю). Для примера – ниже размещена карта-схема территории России, на которой цветами показаны примерные значения.

Обычно это значение несложно уточнить в региональной метеослужбе, но можно, в принципе, ориентироваться и на свои собственные наблюдения.

Итак, коэффициент «d», учитывающий особенности климата региона, для наших расчетом в принимаем равным:

— от – 35 °С и ниже: d = 1,5 ;

— от – 30 °С до – 34 °С: d = 1,3 ;

— от – 25 °С до – 29 °С: d = 1,2 ;

— от – 20 °С до – 24 °С: d = 1,1 ;

— от – 15 °С до – 19 °С: d = 1,0 ;

— от – 10 °С до – 14 °С: d = 0,9 ;

— не холоднее – 10 °С: d = 0,7 .

  • «е» - коэффициент, учитывающий степень утепленности внешних стен.

Суммарное значение тепловых потерь здания напрямую связано со степенью утепленности всех строительных конструкций. Одним из «лидеров» по теплопотерям являются стены. Стало быть, значение тепловой мощности, необходимое для поддержания комфортных условий проживания в помещении, находится в зависимости от качества их термоизоляции.

Значение коэффициента для наших расчетов можно принять следующее:

— внешние стены не имеют утепления: е = 1,27 ;

— средняя степень утепления – стены в два кирпича или предусмотрена их поверхностная термоизоляция другими утеплителями: е = 1,0 ;

— утепление проведено качественно, на основании проведенных теплотехнических расчетов: е = 0,85 .

Ниже по ходу настоящей публикации будут даны рекомендации о том, как можно определить степень утепленности стен и иных конструкций здания.

  • коэффициент «f» - поправка на высоту потолков

Потолки, особенно в частных домах, могут иметь различную высоту. Стало быть, и тепловая мощность на прогрев того или иного помещения одинаковой площади будет различаться еще и по этому параметру.

Не будет большой ошибкой принять следующие значения поправочного коэффициента «f»:

— высота потолков до 2.7 м: f = 1,0 ;

— высота потоков от 2,8 до 3,0 м: f = 1,05 ;

— высота потолков от 3,1 до 3,5 м: f = 1,1 ;

— высота потолков от 3,6 до 4,0 м: f = 1,15 ;

— высота потолков более 4,1 м: f = 1,2 .

  • « g» - коэффициент, учитывающий тип пола или помещение, расположенное под перекрытием.

Как было показано выше, пол является одним из существенных источников теплопотерь. Значит, необходимо внести некоторые корректировки в расчет и на эту особенность конкретного помещения. Поправочный коэффициент «g» можно принять равным:

— холодный пол по грунту или над неотапливаемым помещением (например, подвальным или цокольным): g = 1,4 ;

— утепленный пол по грунту или над неотапливаемым помещением: g = 1,2 ;

— снизу расположено отапливаемое помещение: g = 1,0 .

  • « h» - коэффициент, учитывающий тип помещения, расположенного сверху.

Нагретый системой отопления воздух всегда поднимается вверх, и если потолок в помещении холодный, то неизбежны повышенные теплопотери, которые потребуют увеличения необходимой тепловой мощности. Введём коэффициент «h», учитывающий и эту особенность рассчитываемого помещения:

— сверху расположен «холодный» чердак: h = 1,0 ;

— сверху расположен утепленный чердак или иное утепленное помещение: h = 0,9 ;

— сверху расположено любое отапливаемое помещение: h = 0,8 .

  • « i» - коэффициент, учитывающий особенности конструкции окон

Окна – один из «магистральных маршрутов» течек тепла. Естественно, многое в этом вопросе зависит от качества самой оконной конструкции. Старые деревянные рамы, которые раньше повсеместно устанавливались во всех домах, по степени своей термоизоляции существенно уступают современным многокамерным системам со стеклопакетами.

Без слов понятно, что термоизоляционные качества этих окон — существенно различаются

Но и между ПВЗХ-окнами нет полного единообразия. Например, двухкамерный стеклопакет (с тремя стеклами) будет намного более «теплым» чем однокамерный.

Значит, необходимо ввести определенный коэффициент «i», учитывающий тип установленных в комнате окон:

— стандартные деревянные окна с обычным двойным остеклением: i = 1,27 ;

— современные оконные системы с однокамерным стеклопакетом: i = 1,0 ;

— современные оконные системы с двухкамерным или трехкамерным стеклопакетом, в том числе и с аргоновым заполнением: i = 0,85 .

  • « j» - поправочный коэффициент на общую площадь остекления помещения

Какими бы качественными окна ни были, полностью избежать теплопотерь через них все равно не удастся. Но вполне понятно, что никак нельзя сравнивать маленькое окошко с панорамным остеклением чуть ли ни на всю стену.

Потребуется для начала найти соотношение площадей всех окон в комнате и самого помещения:

х = ∑ S ок / S п

S ок – суммарная площадь окон в помещении;

S п – площадь помещения.

В зависимости от полученного значения и определяется поправочный коэффициент «j»:

— х = 0 ÷ 0,1 → j = 0,8 ;

— х = 0,11 ÷ 0,2 → j = 0,9 ;

— х = 0,21 ÷ 0,3 → j = 1,0 ;

— х = 0,31 ÷ 0,4 → j = 1,1 ;

— х = 0,41 ÷ 0,5 → j = 1,2 ;

  • « k» - коэффициент, дающий поправку на наличие входной двери

Дверь на улицу или на неотапливаемый балкон — это всегда дополнительная «лазейка» для холода

Дверь на улицу или на открытый балкон способна внести свои коррективы в тепловой баланс помещения – каждое ее открытие сопровождается проникновением в помещение немалого объема холодного воздуха. Поэтому имеет смысл учесть и ее наличие – для этого введем коэффициент «k», который примем равным:

— двери нет: k = 1,0 ;

— одна дверь на улицу или на балкон: k = 1,3 ;

— две двери на улицу или на балкон: k = 1,7 .

  • « l» - возможные поправки на схему подключения радиаторов отопления

Возможно, кому-то это покажется несущественной мелочью, но все же – почему бы сразу не учесть планируемую схему подключения радиаторов отопления. Дело в том, что их теплоотдача, а значит, и участие в поддержании определенного температурного баланса в помещении, достаточно заметно меняется при разных типах врезки труб подачи и «обратки».

Иллюстрация Тип врезки радиатора Значение коэффициента «l»
Подключение по диагонали: подача сверху, «обратка» снизу l = 1.0
Подключение с одной стороны: подача сверху, «обратка» снизу l = 1.03
Двухстороннее подключение: и подача, и «обратка» снизу l = 1.13
Подключение по диагонали: подача снизу, «обратка» сверху l = 1.25
Подключение с одной стороны: подача снизу, «обратка» сверху l = 1.28
Одностороннее подключение, и подача, и «обратка» снизу l = 1.28
  • « m» - поправочный коэффициент на особенности места установки радиаторов отопления

И, наконец, последний коэффициент, который также связан с особенностями подключения радиаторов отопления. Наверное, понятно, что если батарея установлена открыто, ничем не загораживается сверху и с фасадной части, то она будет давать максимальную теплоотдачу. Однако, такая установка возможна далеко не всегда – чаще радиаторы частично скрываются подоконниками. Возможны и другие варианты. Кроме того, некоторые хозяева, стараясь вписать приоры отопления в создаваемый интерьерный ансамбль, скрывают их полностью или частично декоративными экранами – это тоже существенно отражается на тепловой отдаче.

Если есть определенные «наметки», как и где будут монтироваться радиаторы, это также можно учесть при проведении расчетов, введя специальный коэффициент «m»:

Иллюстрация Особенности установки радиаторов Значение коэффициента "m"
Радиатор расположен на стене открыто или не перекрывается сверху подоконником m = 0,9
Радиатор сверху перекрыт подоконником или полкой m = 1,0
Радиатор сверху перекрыт выступающей стеновой нишей m = 1,07
Радиатор сверху прикрыт подоконником (нишей), а с лицевой части - декоративным экраном m = 1,12
Радиатор полностью заключен в декоративный кожух m = 1,2

Итак, с формулой расчета ясность есть. Наверняка, кто-то из читателей сразу возьмется за голову – мол, слишком сложно и громоздко. Однако, если к делу подойти системно, упорядочено, то никакой сложности нет и в помине.

У любого хорошего хозяина жилья обязательно есть подробный графический план своих «владений» с проставленными размерами, и обычно – сориентированный по сторонам света. Климатические особенности региона уточнить несложно. Останется лишь пройтись по всем помещениям с рулеткой, уточнить некоторые нюансы по каждой комнате. Особенности жилья - «соседство по вертикали» сверху и снизу, расположение входных дверей, предполагаемую или уже имеющуюся схему установки радиаторов отопления – никто, кроме хозяев, лучше не знает.

Рекомендуется сразу составить рабочую таблицу, куда занести все необходимые данные по каждому помещению. В нее же будет заноситься и результат вычислений. Ну а сами вычисления поможет провести встроенный калькулятор, в котором уже «заложены» все упомянутые выше коэффициенты и соотношения.

Если какие-то данные получить не удалось, то можно их, конечно, в расчет не принимать, но в этом случае калькулятор «по умолчанию» подсчитает результат с учетом наименее благоприятных условий.

Можно рассмотреть на примере. Имеем план дома (взят совершенно произвольный).

Регион с уровнем минимальных температур в пределах -20 ÷ 25 °С. Преобладание зимних ветров = северо-восточные. Дом одноэтажный, с утепленным чердаком. Утепленные полы по грунту. Выбрана оптимальное диагональное подключение радиаторов, которые будут устанавливаться под подоконниками.

Составляем таблицу примерно такого типа:

Помещение, его площадь, высота потолка. Утепленность пола и "соседство" сверху и снизу Количество внешних стен и их основное расположение относительно сторон света и "розы ветров". Степень утепления стен Количество, тип и размер окон Наличие входных дверей (на улицу или на балкон) Требуемая тепловая мощность (с учетом 10% резерва)
Площадь 78,5 м² 10,87 кВт ≈ 11 кВт
1. Прихожая. 3,18 м². Потолок 2.8 м. Утеленный пол по грунту. Сверху - утепленный чердак. Одна, Юг, средняя степень утепления. Подветренная сторона Нет Одна 0,52 кВт
2. Холл. 6,2 м². Потолок 2.9 м. Утепленный пол по грунту. Сверху - утепленный чердак Нет Нет Нет 0,62 кВт
3. Кухня-столовая. 14,9 м². Потолок 2.9 м. Хорошо утепленный пол по грунту. Свеху - утепленный чердак Две. Юг-Запад. Средняя степень утепления. Подветренная сторона Два, однокамерный стеклопакет, 1200 × 900 мм Нет 2.22 кВт
4. Детская комната. 18,3 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север - Запад. Высокая степень утепления. Наветренная Два, двухкамерный стеклопакет, 1400 × 1000 мм Нет 2,6 кВт
5. Спальная. 13,8 м². Потолок 2.8 м. Хорошо утепленный пол по грунту. Сверху - утепленный чердак Две, Север, Восток. Высокая степень утепления. Наветренная сторона Одно, двухкамерный стеклопакет, 1400 × 1000 мм Нет 1,73 кВт
6. Гостиная. 18,0 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак Две, Восток, юг. Высокая степень утепления. Параллельно направлению ветра Четыре, двухкамерный стеклопакет, 1500 × 1200 мм Нет 2,59 кВт
7. Санузел совмещенный. 4,12 м². Потолок 2.8 м. Хорошо утепленный пол. Сверху -утепленный чердак. Одна, Север. Высокая степень утепления. Наветренная сторона Одно. Деревянная рама с двойным остеклением. 400 × 500 мм Нет 0,59 кВт
ИТОГО:

Затем, пользуясь размешенным ниже калькулятором производим расчет для каждого помещения (уже с учетом 10% резерва). С использованием рекомендуемого приложения это не займет много времени. После этого останется просуммировать полученные значения по каждой комнате – это и будет необходимая суммарная мощность системы отопления.

Пояснения к калькулятору годового расхода тепловой энергии на отопление и вентиляцию.

Исходные данные для расчета:

  • Основные характеристики климата, где расположен дом:
    • Средняя температура наружного воздуха отопительного периода t o.п;
    • Продолжительность отопительного периода: это период года со средней суточной температурой наружного воздуха не более +8°C - z o.п.
  • Основная характеристика климата внутри дома: расчетная температура внутреннего воздуха t в.р, °С
  • Основная тепловая характеристики дома: удельный годовой расход тепловой энергии на отопление и вентиляцию, отнесенный к градусо-суткам отопительного периода, Вт·ч/(м2 °C сут).

Характеристики климата.

Параметры климата для расчета отопления в холодный период для разных городов России можно посмотреть здесь: (Карта климатологии) или в СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
Например, параметры для расчета отопления для Москвы (Параметры Б ) такие:

  • Средняя температура наружного воздуха отопительного периода: -2,2 °C
  • Продолжительность отопительного периода: 205 сут. (для периода со средней суточной температурой наружного воздуха не более +8°C).

Температура внутреннего воздуха.

Расчетную температуру внутреннего воздуха вы можете установит свою, а можете взять из нормативов (смотрите таблицу на рисунке 2 или во вкладке Таблица 1).

В расчетах применяется величина D d - градусо-сутки отопительного периода (ГСОП), °С×сут. В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП) t o.п и расчетной температуры внутреннего воздуха в здании t в.р на длительность ОП в сутках: D d = ( t o.п – t в.р) z o.п.

Удельный годовой расход тепловой энергии на отопление и вентиляцию

Нормированные величины.

Удельный расход тепловой энергии на отопление жилых и общественных зданий за отопительный период не должен превышает приведенных в таблице величин по СНиП 23-02-2003 . Данные можно взять из таблицы на картинке 3 или подсчитать на вкладке Таблица 2 (переработанный вариант из [Л.1]). По ней выберите для своего дома (площадь / этажность) значение удельного годового расхода и вставьте в калькулятор. Это характеристика тепловых качеств дома. Все строящиеся жилые дома для постоянного проживания должны отвечать этому требованию. Базовый и нормируемый по годам строительства удельный годовой расход тепловой энергии на отопление и вентиляцию основаны на проекте приказа Министерства Регионального развития РФ «Об утверждении требований энергетической эффективности зданий, строений, сооружений», где указаны требования к базовым характеристикам (проект от 2009 года), к характеристикам нормируемым с момента утверждения приказа (условно обозначил Н.2015) и с 2016 года (Н.2016).

Расчетная величина.

Эта величина удельного расхода тепловой энергии может быть указана в проекте дома, её можно подсчитать на основании проекта дома, можно оценить ее размер на основе реальных тепловых измерений или размеров потребленной за год энергии на отопление. Если эта величина указана в Вт·ч/м2, то её надо разделить на ГСОП в °C сут., получившуюся величину сравнить с нормированной для дома с подобной этажностью и площадью. Если она меньше нормированной, то дом удовлетворяет требованиям по теплозащите, если нет, то дом следует утеплить.

Свои цифры.

Значения исходных данных для расчета даны для примера. Вы можете вставить свои значения в поля на желтом фоне. В поля на розовом фоне вставляете справочные или расчетные данные.

О чем могут сказать результаты расчета.

Удельный годовой расход тепловой энергии, кВт·ч/м2 - можно использовать, чтобы оценить , необходимое количество топлива на год для отопления и вентиляции. По количеству топлива можно выбрать емкость резервуара (склада) для топлива, периодичность его пополнения.

Годовой расход тепловой энергии, кВт·ч - абсолютная величина потребляемой за год энергии на отопление и вентиляцию. Изменяя значения внутренней температуры можно увидеть, как изменяется эта величина, оценить экономию или перерасход энергии от изменения поддерживаемой внутри дома температуры, увидеть как влияет неточность термостата на потребление энергии. Особенно наглядно это будет выглядеть в пересчете на рубли.

Градусо-сутки отопительного периода, °С·сут. - характеризуют климатические условия внешние и внутренние. Поделив на это число удельный годовой расход тепловой энергии вкВт·ч/м2, вы получите нормированную характеристику тепловых свойств дома, отвязанную от климатических условий (это может помочь в выборе проекта дома, теплоизолирующих материалов).

О точности расчетов.

На территории Российской Федерации происходят определенные изменения климата. Исследование эволюции климата показало, что в настоящее время наблюдается период глобального потепления. Согласно оценочному докладу Росгидромета, климат России изменился сильнее (на 0,76 °C), чем климат Земли в целом, причем самые значительные изменения произошли на европейской территории нашей страны. На рис. 4 видно, что повышение температуры воздуха в Москве за период 1950–2010 годов происходило во все сезоны. Наиболее существенным оно было в холодный период (0,67 °C за 10 лет).[Л.2]

Основными характеристиками отопительного периода являются средняя температура отопительного сезона, °С, и продолжительность этого периода. Естественно, что ежегодно их реальное значение меняется и, поэтому, расчеты годового расхода тепловой энергии на отопление и вентиляцию домов являются лишь оценкой реального годового расхода тепловой энергии. Результаты этого расчета позволяют сравнить .

Приложение:

Литература:

  • 1. Уточнение таблиц базового и нормируемого по годам строительства показателей энергоэффективности жилых и общественных зданий
    В. И. Ливчак, канд. техн. наук, независимый эксперт
  • 2. Новый СП 131.13330.2012 «СНиП 23-01–99* “Строительная климатология”. Актуализированная редакция»
    Н. П. Умнякова, канд. техн. наук, заместитель директора по научной работе НИИСФ РААСН

Зачастую не совсем ясно, как формируется стоимость отопления и почему для жителей, например, соседнего дома она значительно ниже. Однако плата всегда начисляется по утвержденной схеме. Действует определенный норматив потребления отопления, и именно он является основанием для формирования итоговой стоимости. О том, что нужно знать о начислении платы за отопление, мы расскажем в данной статье.

В этой статье вы узнаете:

  • Как коммунальная услуга отопления связана с нормативами потребления отопления.
  • Что такое «норматив потребления отопления».
  • Как рассчитать норматив потребления отопления.
  • Как норматив потребления электроэнергии связан с коммунальной услугой отопления, предоставляемой МКД.

Как коммунальная услуга по отоплению связана с нормативом потребления отопления

Для начала опишем, что входит в понятие коммунальной услуги по отоплению. Далее рассмотрим, что такое норматив потребления, установленный для отопления, и как он формируется.

На основании Правил 354 качество обогрева оценивают с учетом изменения температуры воздуха в помещении. Согласно п. 5 Правил, отопительный сезон начинается тогда, когда среднесуточная температура воздуха опускается ниже 8 °C и такой режим сохраняется на протяжении 5 дней. Основная цель подачи тепла в помещения - нагрев воздуха до комфортной температуры. Как нагрев осуществляется технически?

В нашей стране сегодня часто пользуются системами водяного отопления. Тепловой носитель (обычно вода) нагревается до заданной температуры и циркулирует в системе отопления. Постепенно носитель отдает в помещение тепло. При этом его температура, соответственно, понижается. Тепло от теплоносителя поступает в атмосферу, как правило, благодаря радиаторам отопления.

Существует три варианта подачи тепла:

  • теплопроводность;
  • конвекция;
  • излучение.

Теплопроводностью называют способность более нагретых частей объекта отдавать тепло менее нагретым с помощью хаотически движущихся частиц (молекул, атомов). К примеру, когда отопительный радиатор передает тепло соприкасающемуся с ним предмету.

Конвекцией называют вид теплообмена, при котором передача внутренней энергии осуществляется потоками и струями. При конвекции тепло передается с помощью жидкости или газа, в том числе, воздуха. Газ обтекает определенный предмет с температурой, отличной от его собственной. Когда воздух обтекает горячий радиатор отопления, он нагревается. Когда воздух обтекает объекты с более низкой температурой, то, соответственно, остывает. Нагреваются обтекаемые предметы.

Места общего пользования, где радиаторов отопления нет (например, лестничные площадки в МКД), обогреваются, главным образом, за счет конвекции. То есть теплый воздух из квартир, где работают радиаторы, поступает в подъезды. За счет этого в них создается нормальная температура.

При излучении тепловая энергия передается через визуально проницаемую среду, например, через воздух, прозрачные предметы или вакуум. Электромагнитные волны переносят тепло от более теплого к менее теплому предмету. К примеру, тепло от Солнца на Землю передается именно излучением. Конечно, отопительный радиатор не отдает тепло в таком же объеме, как Солнце. Неподготовленный наблюдатель этого излучения увидеть не может. Но благодаря специальным приборам - тепловизорам - данный процесс отлично просматривается.

Непосредственно носитель тепла при отоплении не расходуется (во всяком случае при нормальном функционировании системы отопления и отсутствии утечек). Он лишь отдает тепло в пространство, создавая в нем комфортную среду. Вода, нагретая в котле или каком-либо другом устройстве, поступает в отопительную систему, циркулирует в ней, отдает тепло и остывает. Далее по обратному трубопроводу она идет назад в нагревательное устройство. За счет того, что нет расхода теплового носителя, пользователи коммунальных услуг не платят за его потребление. Оплачивается лишь тепло, которое теплоноситель отдает в пространство отапливаемых квартир.

Общепризнанной единицей измерения тепловой энергии по Международной системе единиц (СИ) является джоуль (Дж). Помещения МКД потребляют энергию двух видов:

  • тепловую;
  • электрическую.

Как было отмечено выше, энергия измеряется в джоулях (Дж). Но для обозначения электроэнергии используют «киловатт-часы» (кВт⋅час), а тепловой энергии - гигакалории (Гкал).

Калория (кал) в качестве единицы измерения используется в разных сферах при расчетах, к примеру, если нужно определить расход тепловой энергии в жилых домах и квартирах МКД. Калория - внесистемная единица, равная 4,1868 Дж. Именно такое количество тепловой энергии требуется для нагрева 1 грамма воды на 1 °C.

Калорию как единицу измерения сначала стали использовать, чтобы рассчитывать содержание тепла в воде. В сфере жилищно-коммунального хозяйства калорию применяют именно с этой целью. Теплоносителем в водяных отопительных системах, как правило, является вода.

Для измерения теплоэнергии, как и другой энергии, могут использоваться джоули. Но, если рассчитывается тепловая энергия, потребляемая в жилых домах и МКД, применяются калории.

Чтобы нагреть 1 грамм воды на 1 °C, нужна 1 калория. Соответственно, чтобы нагреть 1 тонну воды (1 млн граммов) на 1 °C, требуется 1 млн. ккал, или 1 Мкал (мегакалория). К примеру, чтобы нагреть 1 кубометр воды (1 тонну) до температуры 0-60 °C, необходимо 60 Мкал (мегакалорий), или 0,06 (0,060) гигакалорий (Гкал). То есть, чтобы нагреть 100 кубометров воды до температуры 0-60 °C, нужно 6 Гкал. Отметим, 60 градусов - это предел ГВС для жителей жилых домов и МКД.

В отопительных системах МКД циркулируют большие объемы теплового носителя. Именно поэтому расчеты ведутся именно в Гкал (1 Гкал равняется 1 млрд кал).

Что собой представляет норматив потребления отопления с физической точки зрения

Российское законодательство рассматривает МКД при расчетах потребленной энергии для отопления как единое целое. Многоквартирный дом выступает в роли неделимого технического объекта, потребляя тепловую энергию для отопления всех помещений в нем. В связи с этим при расчетах между ресурсосберегающей организацией и исполнителем коммунальных услуг очень важно, сколько теплоэнергии использовал МКД в целом.

Существуют Правила по установке и определению нормативов потребления коммунальных услуг, утвержденные Постановлением Правительства от 23.05.2006 г. № 306. В соответствии с ними, сначала рассчитывают норматив потребления отопления в году в МКД (п. 19 Приложения 1 к Правилам 306, формула 19).

При вычислении норматива потребления отопления в месяц в качестве расчетного срока применяют год. Показатели в разные месяцы, безусловно, отличаются, а плата по нормативу потребления отопления должна быть или одинаковой в течение всего отопительного сезона, или равномерной в течение календарного года. Все зависит от того, какой способ платы за отопление действует в российском субъекте.

В МКД входят жилые и нежилые помещения, а также общедомовое имущество, принадлежащее всем владельцам объектов в доме на праве общедолевой собственности. Всю тепловую энергию, поступающую в МКД, потребляют именно они. Соответственно, платить за отопление должны собственники. Но возникает вопрос: как должна распределяться стоимость оказанной услуги между всеми абонентами? Есть ли норматив потребления отопления на общедомовые нужды?

Сумма оплаты за отопление распределяется вполне обоснованно. Все зависит от метража каждой квартиры или нежилого помещения (по Правилам 354 и 306).

Как производится расчет нормативов потребления тепловой энергии на отопление

Норматив потребления отопления утверждают уполномоченные органы местной власти. Чаще всего это входит в обязанности энергетических комиссий в регионах.

Тип дома определяет норматив потребления отопления. Действует норматив в течение не менее трех лет и в этот период обычно не меняется. Можно обжаловать решение об установке нормативов потребления отопления в судебном порядке.

Нормативы потребления КУ формируют тремя методами: экспертным, расчетным и методом аналогов. Уполномоченные органы вправе использовать один метод или сочетать несколько.

Если специалисты применяют метод аналогов и экспертный, норматив потребления отопления формируют на основании наблюдения за потреблением тепла в жилых домах и МКД с примерно одинаковыми строительными и техническими характеристиками, количеством жильцов и уровнем благоустройства. Основой здесь становятся показатели коллективных счетчиков.

Расчетным методом пользуются в том случае, если невозможно получить показания счетчиков, или данных коллективных приборов учета недостаточно для применения метода аналогов, или нет сведений для использования экспертного метода.

Каждый регион сам устанавливает норматив потребления тепловой энергии на отопление. При его формировании учитывают технологические потери. При этом расходы коммунальных ресурсов, появившиеся из-за неправильной эксплуатации инженерных коммуникаций и оборудования в жилом доме или МКД, неверного применения правил эксплуатации жилых помещений и содержания общедомового имущества в МКД, не принимают во внимание.

Норматив потребления отопления на кв. м. - это расход теплоэнергии, при котором в помещении поддерживается нормальная температура. Для расчета норматива потребления отопления (Гкал на 1 м2 в месяц) используют формулу:

N = Q/S*12

Q здесь является суммарным расходом теплоэнергии на обогрев помещений в МКД или жилом доме. Q - сумма показаний счетчиков за отопительный сезон (Гкал), S - общий метраж помещений в жилом доме или МКД (м 2).

  • Нормативы комнатной температуры.

Существуют Правила предоставления коммунальных услуг населению, утвержденные постановлением Правительства РФ. Согласно им, температура воздуха в жилых помещениях не должна быть меньше отметки с 18 °C и 20 °C для угловых комнат.

Температурный режим в домах жилого назначения определяет ГОСТ Р 51617-2000 «Жилищно-коммунальные услуги. Общие технические условия», утвержденный постановлением Госстандарта России 158-ст от 19.06.00 года и СанПИН 2.1.2.1002-00.

ГОСТ признает оптимальными следующие температурные режимы для жилых помещений:

  • 20 °C для угловых комнат;
  • 20 °C для построек первого года эксплуатации;
  • 18 °C для жилых комнат;
  • 18 °C для кухонь;
  • 25 °C для ванных комнат;
  • 16 °C для лестничных клеток и вестибюлей.

По СанПИН оптимальными и разрешенными в жилых помещениях признаются следующие температурные нормативы:

Для ГВС также установлен температурный режим, равный 50–70 °C.

Как можно точнее рассчитать норматив потребления отопления

Согласно Правилам, при установке нормативов потребления коммунальных услуг следует использовать метод аналогов и расчетный метод.

Метод аналогов применяют, если есть данные, полученные со счетчиков в домах с похожими техническими характеристиками и конструктивными параметрами, уровнем благоустройства, а также расположенных в аналогичных климатических зонах. Метод аналогов позволяет получить достоверную информацию лишь в отношении потребления энергии и расхода воды, несмотря на то что собственники помещений в МКД по-разному моют посуду, принимают душ и ванну, пользуются освещением и энергопотребляющими приборами. Рассчитывая норматив потребления коммунальной услуги по отоплению, этот метод использовать не получится, во всяком случае, с применением общедомовых счетчиков. Что касается индивидуальных счетчиков, практического опыта в этом вопросе пока нет.

Общедомовой прибор учета на вводе в здание фиксирует объем потребления тепла на отопление. Но это не значит, что данный объем тепловой энергии оптимален для жильцов. Например, в Москве по улице Обручева расположены 8 одинаковых домов серии П-18 – 01/12. В рамках капремонта в них заменили старые окна на более энергоемкие новые, утеплили фасады, установили автоматизированные узлы управления отопительной системой, термостаты на отопительных приборах. При этом в двух зданиях, помимо прочего, установили теплораспределители поквартирного учета тепловой энергии. В отопительный сезон 2010–2011 гг. удельное потребление тепловой энергии в среднем составило 190 кВт·ч/м 2 . При этом в течение предшествующего периода в одном доме показатель равнялся 99 кВт·ч/м 2 . Значительного улучшения показателей можно было достичь, если оптимизировать температурный график подачи теплоэнергии для обогрева.

Чтобы вычислить норматив потребления отопления, рекомендуют использовать только расчетный метод. Но формула 9, предлагаемая Правилами, неверная. Согласно ей, тепловая нагрузка на отопление меняется вместе с наружной температурой:

Q о = q о.max (t вн – t н.сро)/(t вн – t н.ро) · 24 n о · 10 –6 , Гкал/ч

q о.max - норматив потребления тепловой энергии на отопление жилого дома или МКД (ккал/час); t вн - температура обогреваемых объектов в доме, °C; t н.сро - среднесуточная температура наружного воздуха в отопительный сезон, °C; t н.ро - расчетная температура наружного воздуха при проектировании отопления, °C; n о - длительность отопительного сезона при среднесуточной наружной температуре 8 °C и меньше. 24 - часы в сутках, а 10 –6 - коэффициенты перевода из ккал в Гкал.

Если учитывать тепловой баланс жилого помещения, расчетная часовая нагрузка на отопление будет равна:

q о.max = q огр q инф – q быт,

q огр - тепловые потери через наружные ограждения; q инф - тепловые потери на нагрев инфильтрующегося воздуха через наружные ограждения; q быт - бытовые выделения тепла от людей, искусственного освещения, использования бытовых приборов, приготовления пищи, мытья посуды, труб ГВС, установленных внутри квартир, а также поступления тепла с рассеянной радиацией.

Когда повышается или понижается температура на улице, меняются лишь первые две составляющие теплового баланса. Бытовые выделения тепла на протяжении всего отопительного сезона остаются неизменными. Температура наружного воздуха на них не влияет. В связи с этим правильный вариант формулы выглядит так:

Q о = [(q о.max q быт) (t вн – t н.сро)/(t вн –Э t н.ро) – q быт ] · 24 n о ·10 –6 ,

Если бытовые тепловыделения обозначить в долях от расчетной часовой нагрузки на отопление и вынести q о.max за квадратные скобки, формула будет такой:

Q о = q о.max · [(1 q быт /q о.max) · (t вн – t н.сро)/(t вн – t н.ро) – q быт /q о.max ] · 24 n о · 10 –6 .

Бытовые тепловыделения в тепловом балансе остаются постоянными в отношении расчетной часовой нагрузки на отопление для определенного дома. Однако доля тепловых выделений повышается, если увеличивается температура наружного воздуха. Благодаря увеличению температуры снаружи, подача тепла на обогрев помещения может сократиться. Графики температур теплового носителя в подающем и обратном трубопроводах отопительной системы должны сходиться не при t н = t вн = 18…20 °C, как это было при использовании приведенной в Правилах формулы, а при t н = 10…15 °C, в соответствии с иными приведенными формулами.

Отметим, что график качественной регулировки источника, выстроенный без учета увеличивающейся доли бытовых выделений тепла в тепловом балансе дома с повышением температуры наружного воздуха, идет вразрез с нормативами. В связи с этим в каждом жилом доме должны присутствовать автоматизированные узлы управления отопительной системы. Если подсоединение зависимое, движение корректирующих подмешивающих насосов должно вестись не только во время срезки центрального графика регулировки, но и на протяжении почти всего периода при условии, что температура наружного воздуха превышает параметры «А».

Доля бытовых выделений тепла - постоянная величина от расчетной часовой нагрузки на отопительную систему для отдельного дома. Эта доля для другого жилого объекта увеличивается с повышенной тепловой защитой или с использованием утилизации тепла вытяжного воздуха для нагрева приточного. Если предполагается построить дом с аналогичными техническими характеристиками и конструкцией, но в регионе с более прохладным климатом, доля бытовых тепловыделений при проектировании отопления будет меньше. Если же планируется строительство на территории с более высокой расчетной температурой наружного воздуха, доля будет выше.

В связи с этим таблицу 7 Правил, в которой обозначен норматив потребления тепловой энергии на отопление жилого дома и МКД, нельзя назвать правильной. При определении значений не учтены меняющиеся доли бытовых тепловыделений по отношению к расчетной часовой нагрузке на отопление в разных российских регионах. Также не учтено, что в дальнейшем, на основании Постановления Правительства РФ № 18 от 25.01.2011 г., энергоэффективность зданий будет повышаться.

Не будем брать во внимание значения удельного расхода теплоэнергии для обогрева домов, возведенных до 1995 года и после 2000 с различным количеством этажей в регионах с расчетной температурой наружного воздуха для проектирования отопления от -5 градусов до -55 градусов. Выявим эти же значения для построек периода 2011–2016 гг. с учетом требований о повышении их энергоэффективности, а также для зданий, где в это же время проводилась капитальная реконструкция, и сравним их с требованиями 2000 года (на основании Постановления Правительства РФ № 18 от 25 января 2011 г.)

По приказу Минрегионразвития РФ № 262 от 28.05.2010 г. вместе с увеличением энергоэффективности повысились нормируемые сопротивления теплопередаче наружных стен, покрытий и перекрытий к уровню табл. 4 СНиП 23–02–2003, окон с 2011 года до величины R F = 0,8 м 2 ·°C/Вт для местностей с величиной градусо-суток более 4 000 и 0,55 м 2 ·°C/Вт для остальных, а с 2016 года - не менее R F = 1,0 м 2 ·°C/Вт также для районов более 4 000 °C·сут. и 0,8 м 2 ·°C/Вт - для остальных.

Для расчетов за основу возьмем девятиэтажную жилую постройку, возводимую в центральной России. Расчетная температура наружного воздуха там составляет –25 градусов, а величина градусо-суток - 5000. В соответствии с нормами на 2000 год, приведенное сопротивление теплопередаче основных наружных ограждений стен R w = 3,15 м 2 ·°C/Вт, окон R F = 0,54 м 2 ·°C/Вт, расчетный воздухообмен при заселенности 20 м 2 общей площади квартир на человека = 30 м 3 /(ч·чел.), удельная величина бытовых тепловыделений 17 Вт/м 2 метража жилых комнат.

Вот как выглядит теплобаланс дома. Через стены здание теряет 20–23 % тепла, через покрытия, перекрытия - 4–6 %, через окна - 25–28 %, за счет инфильтрации воздуха - 40–50 %. Относительный процент бытовых тепловыделений от расчетных тепловых потерь - 18–20 %. Расчетный расход тепла на обогрев дома по отношению к расчетным теплопотерям в 2000 году будет при решении уравнения теплобаланса: о.max 2000 г. = 0,215 0,05 0,265 0,47 – 0,19 = 0,81. Процент бытовых тепловыделений от расчетного потребления тепла на отопление q быт /q о.max = 0,19·100/0,81 = 23,5 %.

Как изменяются относительные теплопотери через окна и стены здания при повышении их теплозащиты

Чтобы понять, как меняется расчетный расход тепловой энергии на обогрев при повышении сопротивления теплопередаче наружных ограждений, посмотрим на рис. 1. Рисунок показывает, что при повышении сопротивления теплопередаче стен на 15 % с 3,15 до 3,6 м 2 ·°C/Вт относительные теплопотери через стены понижаются с 0,302 до 0,265 единиц или равны 0,265/0,302 = 0,877 от предыдущего значения. При переходе на окна с сопротивлением теплопередаче 0,8 вместо 0,54 м 2 ·°C/Вт потребление тепла сокращается на 0,425/0,63 = 0,675 в сравнении с более ранним показателем.

Если рассматривать снижение теплопотерь через покрытия и перекрытия, как через стены, а относительные потери тепла на нагрев инфильтрационного воздуха, как прежде, уравнение теплобаланса дома постройки с 2011 года будет таким:

Qht.max 2011 г. = (0,215 0,05)·0,877 0,265·0,675 0,47 = 0,232 0,179 0,47 = 0,881.

Относительные расчетные затраты теплоэнергии на обогрев равны Qht.max 2011 г. = 0,881 – 0,19 = 0,691, а норматив потребления отопления на 2011 год сократится по сравнению с 2000 годом: 0,691/0,81 = 0, 853 (уменьшится на 14,7 %, благодаря увеличению сопротивления теплопередаче стен, покрытий, перекрытий на 15 % и окон с 0,54 до 0,8 м 2 ·°C/Вт), а по абсолютной величине при значении в 2000 году q о.max = 50 м 2 ·°C/Вт с пересчетом на ккал/ч: 50·0,853/1,163 = 36,6 ккал/(ч·м 2).

Приведенное сопротивление теплопередаче стен повысится еще на 15 % в 2016 г. в сравнении с 2011 г. При переходе на окна с сопротивлением теплопередаче 1,0 вместо 0,8 м2 ·°C/Вт потери тепла снизятся на 0,34/0,425 = 0,8. Показатель относительных суммарных потерь тепла в 9-этажном доме в 2016 году составит:

Q ht.max 2016 г. = 0,232·0,887 0,179·0,8 0,47 = 0,206 0,143 0,47 = 0,82.

Относительные расчетные потери тепла на отоплениеQ ht.max 2016 г = 0,82 – 0,19 = 0,63. Снижение нормируемого удельного показателя в 2016 году по сравнению с 2000 годом равно 0,63/0,81 = 0,778. Сопротивление теплопередаче стен, покрытий, перекрытий повысилось всего на 30 % и окон до 1,0 м2·°C/Вт. За счет этого потребление тепла на обогрев помещения снизилось на 22,2 %, в том числе с 2016 года - на 22,2–14,7 = 7,5 %), а по абсолютной величине: q о.max = 50·0,778/1,163 = 33,4 ккал/(ч·м 2). Вот как будут соотноситься составляющие теплопотерь в жилом девятиэтажном доме в 2016 году. Через стены, покрытия и перекрытия будет уходить 25 % тепла (0,206·100/0,82), через окна 0,143·100/0,82 = 17 % (в 2000 г. эти параметры были идентичны друг другу - 26,5 %), на нагрев инфильтрующегося воздуха в нормативном количестве: 0,47·100/0,82 = 58 % (в 2000 году - 47 %). Процент бытовых выделений тепла по отношению к расчетным потерям тепла на обогрев составит 0,19·100/0,63 = 30 % (в 2000 году - 23,5 %).

Высчитаем в том же соотношении, как для 2000 года, показатели расхода тепла на отопление домов с разным количеством этажей, но для территорий с иными расчетными температурными параметрами наружного воздуха. Ниже размещена таблица с результатами расчетов, принадлежащая СНиП «Тепловые сети». Благодаря таблице можно определить, какой мощностью обладает источник теплоснабжения и каков диаметр труб, используемых в теплосетях.

Высчитывать норматив индивидуального потребления отопления помещения по данной таблице нельзя. Параметры расчетных потерь не отражают степени оптимизации автоматической регулировки подачи тепловой энергии на отопление.

Удельные показатели расчетного расхода тепла на отопление многоквартирных и жилых домов на 1 м 2 общей площади квартир, q o.max , ккал/(ч·м 2)

Этажность
жилых зданий

Расчетная температура наружного воздуха
для проектирования отопления, t н, °С

Для зданий строительства до 1995 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

4–6 эт. кирпичные

4–6 эт. панельные

7–10 эт. кирпичные

7–10 эт. панельные

Для зданий строительства после 2000 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

Для зданий строительства после 2010 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

Для зданий строительства после 2015 года

1–3 эт. отдельностоящие

2–3 эт. сблокированные

Как рассчитывается норматив потребления отопления нежилых помещений

На основании 20 пункта Правил предоставления коммунальных услуг населению, утвержденных Постановлением Правительства РФ от 23.05.2006 г. №307, если в помещениях нежилого назначения МКД не установлены счетчики на ГВС и ХВС, электро-, теплоэнергию и газ, сумму оплаты за услуги ЖКХ рассчитывают по нормативам, которые установило российское законодательство, а также с учетом количества потребленных ресурсов.

Объемы потребленных коммунальных ресурсов определяют так:

  • для ХВС и ГВС - с применением расчетного метода. За основу берут нормативы потребления водных ресурсов. Если их нет - требования и правила строительных норм;
  • для сточных вод - как общий объем израсходованной горячей и холодной воды;
  • для газа и электроэнергии - с использованием расчетного метода. Схему расчета между собой должны согласовать ресурсоснабжающая организация и лицо, с которым у организации заключен договор. Основанием для расчета является мощность и режим работы потребляющих устройств, установленных на объекте;
  • для отопления - в соответствии с подп. 1 пункта 1 приложения №2 к Правилам [примечание: по нормативу потребления в Гкал/кв.м, т.е. расчет такой же, как для квартир]. Исполнителю при этом раз в год нужно корректировать сумму оплаты за отопление. Порядок корректировки описан в подп. 2 п. 1 приложения №2 к Правилам.

В других ситуациях объемы потребленной теплоэнергии в помещениях нежилого назначения, в том числе нежилых объектах, которые не являются частью МКД и расположены отдельно, рассчитываются по Методике определения потребности в топливе, электроэнергии и воде при производстве и передаче теплоэнергии и теплоносителей в системах коммунального теплоснабжения МКД. Методику утвердил Госстрой РФ от 12.08.2003 г. Для расчетов также применяют Методику определения количества тепловой энергии и теплоносителя в водяных системах коммунального теплоснабжения МДС 41-4.2000, утвержденную приказом Госстроя РФ от 06.05.2000 г. № 105.

Из-за того что законодательные формулировки весьма неоднозначны, то, как вопрос для пользователя коммунальных услуг будет решаться на деле, определяется позицией энергосберегающей организации, исполнителя (Уголовный Кодекс, ТСЖ), доводами участников и судебной практикой.

Как норматив потребления электроэнергии на отопление связан с коммунальной услугой отопления, предоставляемой МКД

До того как был принят новый Жилищный Кодекс РФ, в период с 1999 по 2005 гг. действующее законодательство допускало отключение централизованного отопления в отдельно взятом жилом помещении МКД и обогревание его электричеством. Так как централизованное отопление в домах далеко не всегда функционировало качественно, значительная доля населения, оформив все технические документы, начала использовать электробатареи.

Плата за отопление в МКД начислялась так. Собственники квартир, где функционировало централизованное отопление, платили за услугу в соответствии с нормативом потребления. Граждане, пользовавшиеся поквартирным отоплением, услугу не оплачивали, так как не получали квитанции за нее. Все это соответствовало принципам, отраженным в ст. 7 Жилищного Кодекса РФ - «разумность и справедливость». Однако в 2003–2013 гг. все изменилось (таблица).

Формирование суммы оплаты за отопление в МО Мурманской области

Условия

Временной период

До 2006 г.

Основания

Действовал единый по всей области норматив на отопление

Действовали нормативы на отопление,
утвержденные органами местного самоуправления

Субъектом введены новые нормативы на отопление, с выделением норматива на общее имущество

Отменены нормативы на общее имущество

Действует
постановление Правительства РФ
от 23.05.2006 г. № 307

МКД без общедомового прибора учета, помещение без прибора учета

Р i = S i x Nот x Тт. Корректировка по году новым тарифом

Р i = S i x Nt x Тт. Корректировка по году

Р i = S i x Nобщ x Тт Poдн = Nодн x Sои x S i /Sоб. Корректировка отменена

Р i = S i x Nt x Тт. Корректировка отменена

Р i = S i x Nt x Тт. Корректировка
отменена

МКД оборудован общедомовым прибором учета, помещение без прибора учета

Р i = Vд x S i /Sобщ x Тт.
По факту потребления

Р i = S i x V i x Тт.
По средне-
месячному
с корректиров-кой по году

Р i = Vд x S i /Sд x Тт.
По факту потребления

Р i = Vд x S i /
Sобщ x Тт.
По факту потребления

Р i = S i x V i x Тт.
По средне-
месячному
с корректиров-
кой по году

Сложности с оплатой тепла появились, когда в МКД установили общедомовые счетчики. Сумма оплаты стала складываться из двух составляющих: за обогрев помещения жилого или нежилого назначения и общих площадей в доме.

В итоге, начиная с 2013 года и по сей день, в ряде российских регионов (например, в Кировской и Мурманской областях), где в МКД есть помещения, обогреваемые электричеством, в соответствии с законодательным переводом на данный вид отопления, владельцам этих помещений продолжают выставлять квитанции по оплате услуги централизованного отопления (рис. 1).

Рис. 1. Схема распределения тепловой энергии на отопление дома № 11 по ул. Советской г. Кандалакша (вариант ГЖИ Мурманской области):

  • 59,07 Гкал / 2617 кв. м = 0,02257 Гкал/кв. м.
  • 0,02257 Гкал/кв. м x 1597,7 кв. м = 36,06 Гкал.
  • 0,02257 Гкал/кв. м x 206,5 кв. м = 4,66 Гкал.
  • 4,66 Гкал / 2410,5 кв. м = 0,001933 Гкал/кв. м.
  • 0,001933 Гкал/кв. м x 812,8 кв. м = 1,57 Гкал.
  • 0,001933 Гкал/кв. м x 1597,7 кв. м = 3,09 Гкал.

Вместе с тем власти регионов настаивают, чтобы собственники вновь перешли на централизованное отопление. Но они забывают, что у закона нет обратной силы.

В пользу того, что действия являются правомерными, свидетельствует формула 3 из приложения 2 Правил. В соответствии с ней площади, обогреваемые за счет электричества, не исключаются из схемы расчета за услуги централизованного отопления.

При этом 12.03.2015 г. прошло заседание рабочей группы, посвященное формированию оплаты за централизованное отопление для собственников жилых помещений с электробатареями (рабочую группу поручил создать губернатор Мурманской области). В протоколе заседания значилась рекомендация администрациям всех МО в Мурманской области проинформировать владельцев, что жилые помещения должны быть переведены на централизованное отопление. Однако неясно, как это соотносится с положением об отсутствии обратного действия у закона.

Выходит, что сегодня суть конфликтов между заинтересованными сторонами заключается в следующем:

  • теплоснабжающие предприятия хотят, чтобы собственники платили за неоказанные услуги;
  • собственники жилых объектов не намерены оплачивать неоказанные услуги.

В ряде российских регионов сегодня (к примеру, в Брянской и Архангельской областях, Ставропольском крае) ситуация несколько иная. Формулу 3 приложения 2 Правил используют с учетом определения Верховного Суда РФ от 23.03.2015 г. № АКПИ15-198. При этом в данных регионах вопрос, связанный оплатой отопления, решают на основании ст. 7 Жилищного Кодекса РФ, в том числе главных ее положениях – разумности и справедливости .

Возможности решения проблемы

Основной элемент, подтверждающий, что владелец объекта получает коммунальную услугу по центральному отоплению, - радиаторная батарея. Она является частью централизованного отопления, поскольку присоединена к нему, и поддерживает в жилье необходимую температуру. Помещения многоквартирного дома, обогреваемые при помощи электроэнергии, не оснащены данными элементами. Соответственно, по закону и услуга за отопление отсутствует.

Ниже приведены части МКД, служащие доказательством того, что собственники помещений нежилого и жилого назначения, куда отопление поступает за счет электрообогрева, обязаны оплачивать часть коммунальные услуги:

  • лестничные клетки (общедомовое имущество всех владельцев объектов МКД);
  • стояки отопления, которые проходят через жилые и нежилые площади владельцев, где действует электрообогрев.

Ряд проблем еще предстоит решить. Среди них:

  • Как собственники объектов, где применяется электрообогрев, должны платить за отопление, расходуемое на общедомовое имущество, какой действует норматив потребления отопления на общедомовые нужды.
  • Как оплачивать теплоэнергию, которую излучают стояки отопительной системы, проходящие через объекты с электрическим обогревом.

Экспертный совет системы общественного контроля в сфере ЖКХ Общественной палаты Мурманской области разработал ряд предложений по формированию суммы оплаты за отопление в МКД с жилыми помещениями с электробатареями (рис. 2, 3).

Рис. 2. Схема показывает, как распределяется теплоэнергия на обогрев дома № 11 по улице Советской в Кандалакше (представлена экспертным советом системы общественного контроля в сфере ЖКХ Общественной палаты Мурманской области):

  • 0,1712 Гкал/мес - потери теплоэнергии от подающего и обратного стояков (среднее значение), которые проходят через жилые объекты. Для расчетов использована инструкция Минэнерго России от 30.12.2008 г. № 325.
  • 8 кв. x 0,1712 Гкал = 1,3696 Гкал.
  • 59,07 Гкал - 1,3696 Гкал = 57,70 Гкал.
  • 57,7 Гкал / 1804,2 кв. м = 0,03198 Гкал/кв. м.
  • 0,03198 Гкал/кв. м x 1597,7 кв. м = 51,09 Гкал.
  • 0,03198 Гкал/кв. м x 206,5 кв. м = 6,6 Гкал.
  • 6,6 Гкал / 2410,5 кв. м = 0,00274 Гкал/кв. м.
  • 0,00274 Гкал/кв. м x 812,8 кв. м = 2,227 Гкал.
  • 0,00274 Гкал/кв. м x 1597,7 кв. м = 4,38 Гкал.

Рис. 3. Схема оплаты центрального отопления владельцами объектов, где действует электрообогрев.

В данном случае можно:

  • Использовать норматив потребления отопления на общедомовые нужды (аналог, по ст. 7 Жилищного Кодекса РФ).
  • Устанавливать счетчики теплоэнергии на отопительных стояках общедомового имущества.
  • Применять приборно-расчетный метод объема теплоэнергии, которую излучают отопительные стояки.

В приведенных схемах позиции сторон обоснованы и справедливы:

  • теплоснабжающая организация заинтересована в продаже услуги по отоплению и получении оплаты за нее;
  • собственники помещений хотят получить качественную коммунальную услугу по отоплению и заплатить за нее.

Увы, предложения, которые выдвинул экспертный совет общественного контроля в сфере ЖКХ Общественной палаты Мурманской области, даже не будут рассмотрены. Вместе с тем владельцам объектов, обогреваемых за счет электричества, как и раньше, поступают счета на двойную оплату за услуги отопления. Такую же проблему обнаружили и в Крыму в г. Красноперекопске. Решать ее должно непосредственно Правительство страны.