Что такое уравнение в химии. Уравнения химических реакций

Часть I

1. Закон Ломоносова-Лавуазье – закон сохранения массы веществ:

2. Уравнения химической реакции – это условная запись химической реакции с помощью химических формул и математических знаков.

3. Химическое уравнение должно соответствовать закону сохранения массы веществ, что достигается расстановкой коэффициентов в уравнении реакции.

4. Что показывает химическое уравнение?
1) Какие вещества вступают в реакцию.
2) Какие вещества образуются в результате.
3) Количественные отношения веществ в реакции, т. е. количества реагирующих и образующихся веществ в реакции.
4) Тип химической реакции.

5. Правила расстановки коэффициентов в схеме химической реакции на примере взаимодействия гидроксида бария и фосфорной кислоты с образованием фосфата бария и воды.
а) Запишите схему реакции, т. е. формулы реагирующих и образующихся веществ:

б) начинайте уравнивать схему реакции с формулы соли (если она имеется). При этом помните, что несколько сложных ионов в составе основания или соли обозначаются скобками, а их число – индексами за скобками:

в) водород уравняйте в предпоследнюю очередь:

г) кислород уравняйте последним – это индикатор верной расстановки коэффициентов.
Перед формулой простого вещества возможна запись дробного коэффициента, после чего уравнение необходимо переписать с удвоенными коэффициентами.

Часть II

1. Составьте уравнения реакций, схемы которых:

2. Напишите уравнения химических реакций:

3. Установите соответствие между схемой и суммой коэффициентов в химической реакции.

4. Установите соответствие между исходными веществами и продуктами реакции.

5. Что показывает уравнение следующей химической реакции:

1) Вступили в реакцию гидроксид меди и соляная кислота;
2) Образовались в результате реакции соль и вода;
3) Коэффициенты перед исходными веществами 1 и 2.

6. С помощью следующей схемы составьте уравнение химической реакции, используя удвоение дробного коэффициента:

7. Уравнение химической реакции:
4P+5O2=2P2O5
показывает количество вещества исходных веществ и продуктов, их массу или объём:
1) фосфора – 4 моль или 124 г;
2) оксида фосфора (V) – 2 моль, 284 г;
3) кислорода – 5 моль или 160 л.

Поговорим о том, как составить уравнение химической реакции. Именно этот вопрос в основном вызывает серьезные затруднения у школьников. Одни не могут понять алгоритм составления формул продуктов, другие неправильно расставляют коэффициенты в уравнении. Учитывая, что все количественные вычисления осуществляются именно по уравнениям, важно понять алгоритм действий. Попробуем выяснить, как составлять уравнения химических реакций.

Составление формул по валентности

Для того чтобы правильно записывать процессы, происходящие между различными веществами, нужно научиться записывать формулы. Бинарные соединения составляют с учетом валентностей каждого элемента. Например, у металлов главных подгрупп она соответствует номеру группы. При составлении конечной формулы между этими показателями определяется наименьшее кратное, затем расставляются индексы.

Что такое уравнение

Под ним понимают символьную запись, которая отображает взаимодействующие химические элементы, их количественные соотношения, а также те вещества, которые получаются в результате процесса. Одно из заданий, предлагаемых ученикам девятого класса на итоговой аттестации по химии, имеет следующую формулировку: «Составьте уравнения реакций, характеризующих химические свойства предложенного класса веществ». Для того чтобы справиться с поставленной задачей, ученики должны владеть алгоритмом действий.

Алгоритм действий

Например, нужно написать процесс горения кальция, пользуясь символами, коэффициентами, индексами. Поговорим о том, как составить уравнение химической реакции, воспользовавшись порядком действий. В левой части уравнения через "+" записываем знаками вещества, которые участвуют в данном взаимодействии. Так как горение происходит с участием кислорода воздуха, который относится к двухатомным молекулам, его формулу пишем О2.

За знаком равенства формируем состав продукта реакции, используя правила расстановки валентности:

2Ca + O2 = 2CaO.

Продолжая разговор о том, как составить уравнение химической реакции, отметим необходимость использования закона постоянства состава, а также сохранения состава веществ. Они позволяют проводить процесс уравнивания, расставлять в уравнении недостающие коэффициенты. Данный процесс является одним из простейших примеров взаимодействий, происходящих в неорганической химии.

Важные аспекты

Для того чтобы понять, как составить уравнение химической реакции, отметим некоторые теоретические вопросы, касающиеся этой темы. Закон сохранения массы веществ, сформулированный М. В. Ломоносовым, объясняет возможность расстановки коэффициентов. Так как количество атомов каждого элемента до и после взаимодействия остается неизменным, можно проводить математические расчеты.

При уравнивании левой и правой частей уравнения используют наименьшее общее кратное, аналогично тому, как составляется формула соединения с учетом валентностей каждого элемента.

Окислительно-восстановительные взаимодействия

После того как у школьников будет отработан алгоритм действий, они смогут составить уравнение реакций, характеризующих химические свойства простых веществ. Теперь можно переходить к разбору более сложных взаимодействий, например протекающих с изменением степеней окисления у элементов:

Fe + CuSO4 = FeSO4 + Cu.

Существуют определенные правила, согласно которым расставляют степени окисления в простых и сложных веществах. Например, у двухатомных молекул этот показатель равен нулю, в сложных соединениях сумма всех степеней окисления также должна быть равна нулю. При составлении электронного баланса определяют атомы или ионы, которые отдают электроны (восстановитель), принимают их (окислитель).

Между этими показателями определяется наименьшее кратное, а также коэффициенты. Завершающим этапом разбора окислительно-восстановительного взаимодействия является расстановка коэффициентов в схеме.

Ионные уравнения

Одним из важных вопросов, который рассматривается в курсе школьной химии, является взаимодействие между растворами. Например, дано задание следующего содержания: «Составьте уравнение химической реакции ионного обмена между хлоридом бария и сульфатом натрия». Оно предполагает написание молекулярного, полного, сокращенного ионного уравнения. Для рассмотрения взаимодействия на ионном уровне необходимо по таблице растворимости указать ее для каждого исходного вещества, продукта реакции. Например:

BaCl2 + Na2SO4 = 2NaCl + BaSO4

Вещества, которые не растворяются на ионы, записывают в молекулярном виде. Реакция обмена ионами протекает полностью в трех случаях:

  • образование осадка;
  • выделение газа;
  • получение малодиссоциируемого вещества, например воды.

При наличии у вещества стереохимического коэффициента он учитывается при написании полного ионного уравнения. После того как будет написано полное ионное уравнение, проводят сокращение тех ионов, которые не были связаны в растворе. Конечным итогом любого задания, предполагающего рассмотрение процесса, протекающего между растворами сложных веществ, будет запись сокращенной ионной реакции.

Заключение

Химические уравнения позволяют объяснять с помощью символов, индексов, коэффициентов те процессы, которые наблюдаются между веществами. В зависимости от того, какой именно протекает процесс, существуют определенные тонкости записи уравнения. Общий алгоритм составления реакций, рассмотренный выше, основывается на валентности, законе сохранения массы веществ, постоянстве состава.


Во время химических реакций из одних веществ получаются другие (не путать с ядерными реакциями, в которых один химический элемент превращается в другой).

Любая химическая реакция описывается химическим уравнением :

Реагенты → Продукты реакции

Стрелка указывает направление протекания реакции.

Например:

В данной реакции метан (СН 4) реагирует с кислородом (О 2), в результате чего образуется диоксид углерода (СО 2) и вода (Н 2 О), а точнее - водяной пар. Именно такая реакция происходит на вашей кухне, когда вы поджигаете газовую конфорку. Читать уравнение следует так: одна молекула газообразного метана вступает в реакцию с двумя молекулами газообразного кислорода, в результате получается одна молекула диоксида углерода и две молекулы воды (водяного пара).

Числа, расположенные перед компонентами химической реакции, называются коэффициентами реакции .

Химические реакции бывают эндотермическими (с поглощением энергии) и экзотермические (с выделением энергии). Горение метана - типичный пример экзотермической реакции.

Существует несколько видов химических реакций. Самые распространенные:

  • реакции соединения;
  • реакции разложения;
  • реакции одинарного замещения;
  • реакции двойного замещения;
  • реакции окисления;
  • окислительно-восстановительные реакции.

Реакции соединения

В реакциях соединения хотя бы два элемента образуют один продукт:

2Na (т) + Cl 2 (г) → 2NaCl (т) - образование поваренной соли.

Следует обратить внимание на существенный нюанс реакций соединения: в зависимости от условий протекания реакции или пропорций реагентов, вступающих в реакцию, - ее результатом могут быть разные продукты. Например, при нормальных условиях сгорания каменного угля получается углекислый газ:
C (т) + O 2 (г) → CO 2 (г)

Если же количество кислорода недостаточно, то образуется смертельно опасный угарный газ:
2C (т) + O 2 (г) → 2CO (г)

Реакции разложения

Эти реакции являются, как бы, противоположными по сути, реакциям соединения. В результате реакции разложения вещество распадается на два (3, 4...) более простых элемента (соединения):

  • 2H 2 O (ж) → 2H 2 (г) + O 2 (г) - разложение воды
  • 2H 2 O 2 (ж) → 2H 2 (г) O + O 2 (г) - разложение перекиси водорда

Реакции одинарного замещения

В результате реакций одинарного замещения, более активный элемент замещает в соединении менее активный:

Zn (т) + CuSO 4 (р-р) → ZnSO 4 (р-р) + Cu (т)

Цинк в растворе сульфата меди вытесняет менее активную медь, в результате чего образуется раствор сульфата цинка.

Степень активности металлов по возрастанию активности:

  • Наиболее активными являются щелочные и щелочноземельные металлы

Ионное уравнение вышеприведенной реакции будет иметь вид:

Zn (т) + Cu 2+ + SO 4 2- → Zn 2+ + SO 4 2- + Cu (т)

Ионная связь CuSO 4 при растворении в воде распадается на катион меди (заряд 2+) и анион сульфата (заряд 2-). В результате реакции замещения образуется катион цинка (который имеет такой же заряд, как и катион меди: 2-). Обратите внимание, что анион сульфата присутствует в обеих частях уравнения, т.е., по всем правилам математики его можно сократить. В итоге получится ионно-молекулярное уравнение:

Zn (т) + Cu 2+ → Zn 2+ + Cu (т)

Реакции двойного замещения

В реакциях двойного замещения происходит замещение уже двух электронов. Такие реакции еще называют реакциями обмена . Такие реакции проходят в растворе с образованием:

  • нерастворимого твердого вещества (реакции осаждения);
  • воды (реакции нейтрализации).

Реакции осаждения

При смешивании раствора нитрата серебра (соль) с раствором хлорида натрия образуется хлорид серебра:

Молекулярное уравнение: KCl (р-р) + AgNO 3 (p-p) → AgCl (т) + KNO 3 (p-p)

Ионное уравнение: K + + Cl - + Ag + + NO 3 - → AgCl (т) + K + + NO 3 -

Молекулярно-ионное уравнение: Cl - + Ag + → AgCl (т)

Если соединение растворимое, оно будет находиться в растворе в ионном виде. Если соединение нерастворимое, оно будет осаждаться, образовывая твердое вещество.

Реакции нейтрализации

Это реакции взаимодействия кислот и оснований, в результате которых образуются молекулы воды.

Например, реакция смешивания раствора серной кислоты и раствора гидроксида натрия (щелока):

Молекулярное уравнение: H 2 SO 4 (p-p) + 2NaOH (p-p) → Na 2 SO 4 (p-p) + 2H 2 O (ж)

Ионное уравнение: 2H + + SO 4 2- + 2Na + + 2OH - → 2Na + + SO 4 2- + 2H 2 O (ж)

Молекулярно-ионное уравнение:2H + + 2OH - → 2H 2 O (ж) или H + + OH - → H 2 O (ж)

Реакции окисления

Это реакции взаимодействия веществ с газообразным кислородом, находящимся в воздухе, при которых, как правило, выделяется большое количество энергии в виде тепла и света. Типичная реакция окисления - это горение. В самом начале данной страницы приведена реакция взаимодействия метана с кислородом:

CH 4 (г) + 2O 2 (г) → CO 2 (г) + 2H 2 O (г)

Метан относится к углеводородам (соединения из углерода и водорода). При реакции углеводорода с кислородом выделяется много тепловой энергии.

Окислительно-восстановительные реакции

Это реакции при которых происходит обмен электронами между атомами реагентов. Рассмотренные выше реакции, также являются окислительно-восстановительными реакциями:

  • 2Na + Cl 2 → 2NaCl - реакция соединения
  • CH 4 + 2O 2 → CO 2 + 2H 2 O - реакция окисления
  • Zn + CuSO 4 → ZnSO 4 + Cu - реакция одинарного замещения

Максимально подробно окислительно-восстановительные реакции с большим количеством примеров решения уравнений методом электронного баланса и методом полуреакций описаны в разделе

Класс: 8

Презентация к уроку
























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: помочь обучающимся сформировать знания о химическом уравнении как об условной записи химической реакции с помощью химических формул.

Задачи:

Образовательные:

  • систематизировать ранее изученный материал;
  • обучать умению составлять уравнения химических реакций.

Воспитательные:

  • воспитывать коммуникативные навыки (работа в паре, умение слушать и слышать).

Развивающие:

  • развивать учебно-организационные умения, направленные на выполнение поставленной задачи;
  • развивать аналитические навыки мышления.

Тип урока: комбинированный.

Оборудование: компьютер, мультимедийный проектор, экран, оценочные листы, карта рефлексии, “набор химических знаков”, тетрадь с печатной основой, реактивы: гидроксид натрия, хлорид железа(III), спиртовка, держатель, спички, лист ватмана, разноцветные химические знаки.

Презентация урока (приложение 3)

Структура урока.

І. Организационный момент.
ІІ. Актуализация знаний и умений.
ІІІ. Мотивация и целеполагание.
ІV. Изучение нового материала:
4.1 реакция горения алюминия в кислороде;
4.2 реакция разложения гидроксида железа (III);
4.3 алгоритм расстановки коэффициентов;
4.4 минута релаксации;
4.5 расставь коэффициенты;
V. Закрепление полученных знаний.
VІ. Подведение итогов урока и выставление оценок.
VІІ. Домашнее задание.
VІІІ. Заключительное слово учителя.

Ход урока

Химическая натура сложной частицы
определяется натурой элементарных
составных частей,
количеством их и
химическим строением.
Д.И.Менделеев

Учитель. Здравствуйте, ребята. Садитесь.
Обратите внимание: у вас на столе лежит тетрадь с печатной основой (Приложение 2), в которой вы сегодня будете работать, и оценочный лист, в нем вы будете фиксировать свои достижения, подпишите его.

Актуализация знаний и умений.

Учитель. Мы с вами познакомились с физическими и химическими явлениями, химическими реакциями и признаками их протекания. Изучили закон сохранения массы веществ.
Давайте проверим ваши знания. Я предлагаю вам открыть тетради с печатной основой и выполнить задание 1. На выполнение задания вам дается 5 минут.

Тест по теме “Физические и химические явления. Закон сохранения массы веществ”.

1.Чем химические реакции отличаются от физических явлений?

  1. Изменение формы, агрегатного состояния вещества.
  2. Образование новых веществ.
  3. Изменение местоположения.

2. Каковы признаки химической реакции?

  1. Образование осадка, изменение цвета, выделение газа.
  • Намагничивание, испарение, колебание.
  • Рост и развитие, движение, размножение.
  • 3. В соответствии с каким законом составляются уравнения химических реакций?

    1. Закон постоянства состава вещества.
    2. Закон сохранения массы вещества.
    3. Периодический закон.
    4. Закон динамики.
    5. Закон всемирного тяготения.

    4. Закон сохранения массы вещества открыл:

    1. Д.И. Менделеев.
    2. Ч. Дарвин.
    3. М.В. Ломоносов.
    4. И. Ньютон.
    5. А.И. Бутлеров.

    5. Химическим уравнением называют:

    1. Условную запись химической реакции.
  • Условную запись состава вещества.
  • Запись условия химической задачи.
  • Учитель. Вы выполнили работу. Я предлагаю вам осуществить ее проверку. Поменяйтесь тетрадями и осуществите взаимопроверку. Внимание на экран. За каждый правильный ответ – 1 балл. Общее количество баллов занесите в оценочные листы.

    Мотивация и целеполагание.

    Учитель. Используя эти знания, мы сегодня будем составлять уравнения химических реакций, раскрывая проблему “Является ли закон сохранения массы веществ основой для составления уравнений химических реакций”

    Изучение нового материала.

    Учитель. Мы привыкли считать, что уравнение-это математический пример, где есть неизвестное, и это неизвестное нужно вычислить. А вот в химических уравнениях обычно ничего неизвестного не бывает: в них просто записывается все формулами: какие вещества вступают в реакцию и какие получаются в ходе этой реакции. Посмотрим опыт.

    (Реакция соединения серы и железа.) Приложение 3

    Учитель. С точки зрения массы веществ, уравнение реакции соединения железа и серы понимается следующим образом

    Железо + сера → сульфид железа (II) (задание 2 тпо)

    Но в химии слова отражаются химическими знаками. Запишите это уравнение химическими символами.

    Fe + S → FeS

    (Один ученик пишет на доске, остальные в ТПО.)

    Учитель. Теперь прочитайте.
    Обучающиеся. Молекула железа взаимодействует с молекулой серы, получается одна молекула сульфида железа (II).
    Учитель. В данной реакции мы видим, что количество исходных веществ равно количеству веществ в продукте реакции.
    Всегда надо помнить, что при составлении уравнений реакций ни один атом не должен потеряться или неожиданно появиться. Поэтому иногда, записав все формулы в уравнении реакции, приходиться уравнивать число атомов в каждой части уравнения – расставлять коэффициенты. Посмотрим еще один опыт

    (Горение алюминия в кислороде.) Приложение 4

    Учитель. Запишем уравнение химической реакции (задание 3 в ТПО)

    Al + O 2 → Al +3 O -2

    Чтобы записать правильно формулу оксида, вспомним что

    Обучающиеся. Кислород в оксидах имеет степень окисления -2, алюминий – химический элемент с постоянной степенью окисления +3. НОК = 6

    Al + O 2 → Al 2 O 3

    Учитель. Мы видим, что в реакцию вступает 1 атом алюминия, образуется два атома алюминия. Вступает два атома кислорода, образуется три атома кислорода.
    Просто и красиво, но неуважительно по отношению к закону сохранения массы веществ – она разная до и после реакции.
    Поэтому нам необходимо расставить коэффициенты в данном уравнении химической реакции. Для этого найдем НОК для кислорода.

    Обучающиеся. НОК = 6

    Учитель. Перед формулами кислорода и оксида алюминия ставим коэффициенты, чтобы число атомов кислорода слева и справа было равно 6.

    Al + 3 O 2 → 2 Al 2 O 3

    Учитель. Теперь получаем, что в результате реакции образуется четыре атома алюминия. Следовательно, перед атомом алюминия в левой части ставим коэффициент 4

    Al + 3O 2 → 2Al 2 O 3

    Еще раз пересчитаем все атомы до реакции и после нее. Ставим равно.

    4Al + 3O 2 _ = 2 Al 2 O 3

    Учитель. Рассмотрим еще один пример

    (Учитель демонстрирует опыт по разложению гидроксида железа (III).)

    Fe(OH) 3 → Fe 2 O 3 + H 2 O

    Учитель. Расставим коэффициенты. В реакцию вступает 1 атом железа, образуется два атома железа. Следовательно, перед формулой гидроксида железа (3) ставим коэффициент 2.

    Fe(OH) 3 → Fe 2 O 3 + H 2 O

    Учитель. Получаем, что в реакцию вступает 6 атомов водорода (2х3), образуется 2 атома водорода.

    Обучающиеся. НОК =6. 6/2 = 3. Следовательно, у формулы воды ставим коэффициент 3

    2Fe(OH) 3 → Fe 2 O 3 + 3 H 2 O

    Учитель. Считаем кислород.

    Обучающиеся. Слева – 2х3 =6; справа – 3+3 = 6

    Обучающиеся. Количество атомов кислорода,вступивших в реакцию, равно количеству атомов кислорода, образовавшихся в ходе реакции. Можно ставить равно.

    2Fe(OH) 3 = Fe 2 O 3 +3 H 2 O

    Учитель. Теперь давайте обобщим все сказанное ранее и познакомимся с алгоритмом расстановки коэффициентов в уравнениях химических реакций.

    1. Подсчитать количество атомов каждого элемента в правой и левой части уравнения химической реакции.
    2. Определить, у какого элемента количество атомов меняется, найти НОК.
    3. Разделить НОК на индексы – получить коэффициенты. Поставить их перед формулами.
    4. Пересчитать количество атомов, при необходимости действие повторить.
    5. Последним проверить количество атомов кислорода.

    Учитель. Вы хорошо потрудились и, наверное, устали. Я предлагаю вам расслабиться, закрыть глаза и вспомнить какие-либо приятные моменты жизни. У каждого из вас они разные. Теперь откройте глаза и сделайте круговые движения ими сначала по часовой стрелке, затем – против. Теперь интенсивно подвигайте глазами по горизонтали: направо – налево, и вертикали: вверх – вниз.
    А сейчас активизируем мыслительную деятельность и помассируем мочки ушей.

    Учитель. Продолжаем работу.
    В тетрадях с печатной основой выполним задание 5. Работать вы будете в парах. Вам необходимо расставить коэффициенты в уравнених химических реакций. На выполнение задания дается 10 минут.

    • P + Cl 2 →PCl 5
    • Na + S → Na 2 S
    • HCl + Mg →MgCl 2 + H 2
    • N 2 + H 2 →NH 3
    • H 2 O → H 2 + O 2

    Учитель. Проверим выполнение задания (учитель опрашивает и выводит на слайд правильные ответы) . За каждый правильно поставленный коэффициент – 1 балл.
    С заданием вы справились. Молодцы!

    Учитель. Теперь давайте вернемся к нашей проблемы.
    Ребята, как вы считаете, является ли закон сохранения массы веществ основой для составления уравнений химических реакций.

    Обучающиеся. Да, в ходе урока мы доказали, что закон сохранения массы веществ – основа для составления уравнений химических реакций.

    Закрепление знаний.

    Учитель. Все основные вопросы мы изучили. Теперь выполним небольшой тест, который позволит увидеть, как вы освоили тему. Вы должны на него отвечать только “да” или “нет”. На работу дается 3 минуты.

    Утверждения.

    1. В реакции Ca + Cl 2 → CaCl 2 коэффициенты не нужны. (Да)
    2. В реакции Zn + HCl → ZnCl 2 + H 2 коэффициент у цинка 2. (Нет)
    3. В реакции Ca + O 2 → CaO коэффициент у оксида кальция 2. (Да)
    4. В реакции CH 4 → C + H 2 коэффициенты не нужны. (Нет)
    5. В реакции CuO + H 2 → Cu + H 2 O коэффициент у меди 2. (Нет)
    6. В реакции C + O 2 → CO коэффициент 2 надо поставить и у оксида углерода (II) , и у углерода. (Да)
    7. В реакции CuCl 2 + Fe → Cu + FeCl 2 коэффициенты не нужны. (Да)

    Учитель. Проверим выполнение работы. За каждый правильный ответ – 1 балл.

    Итог урока.

    Учитель. Вы справились хорошо с заданием. Сейчас подсчитайте общее количество набранных баллов за урок и поставьте себе оценку согласно рейтингу, который вы видите на экране. Сдайте мне оценочные листы для выставления вашей оценки в журнал.

    Домашнее задание.

    Учитель. Наш урок подошел к концу, в ходе которого мы смогли доказать, что закон сохранения массы веществ является основой для составления уравнений реакций, и научились составлять уравнения химических реакций. И, как финальная точка, запишите домашнее задание

    § 27, упр. 1 – для тех, кто получил оценку “3”
    упр. 2– для тех, кто получил оценку “4”
    упр. 3 – для тех, кто получил оценку
    “5”

    Заключительное слово учителя.

    Учитель. Я благодарю вас за урок. Но прежде чем вы покинете кабинет, обратите внимание на таблицу (учитель показывает на лист ватмана с изображением таблицы и разноцветными химическими знаками). Вы видите химические знаки разного цвета. Каждый цвет символизирует ваше настроение.. Я предлагаю вам составить свою таблицу химических элементов (она будет отличаться от ПСХЭ Д.И.Менделеева) – таблицу настроения урока. Для этого вы должны подойти к нотному листу, взять один химический элемент, согласно той характеристике, которую вы видите на экране, и прикрепить в ячейку таблицы. Я сделаю это первой, показав вам свою комфортность от работы с вами.

    F Мне было на уроке комфортно, я получил ответ на все интересующие меня вопросы.

    F На уроке я достиг цели наполовину.
    F Мне на уроке было скучно, я ничего не узнал нового .

    Окислительно-восстановительные реакции - это процесс «перетекания» электронов от одних атомов к другим. В результате происходит окисление или восстановление химических элементов, входящих в состав реагентов.

    Основные понятия

    Ключевой термин при рассмотрении окислительно-восстановительных реакций - это степень окисления, которая представляет собой условный заряд атома и количество перераспределяемых электронов. Окисление - процесс потери электронов, при котором увеличивается заряд атома. Восстановление, наоборот, представляет собой процесс присоединения электронов, при котором степень окисления уменьшается. Соответственно, окислитель принимает новые электроны, а восстановитель - теряет их, при этом такие реакции всегда происходят одновременно.

    Определение степени окисления

    Вычисление данного параметра - одна из самых популярных задач в школьном курсе химии. Поиск зарядов атомов может быть как элементарным вопросом, так и задачей, требующей скрупулезных расчетов: все зависит от сложности химической реакции и количества составляющих соединений. Хотелось бы, чтобы степени окисления указывались в периодической таблице и были всегда под рукой, однако этот параметр приходится либо запоминать, либо вычислять для конкретной реакции. Итак, существует два однозначных свойства:

    • Сумма зарядов сложного соединения всегда равна нулю. Это значит, что часть атомов будет иметь положительную степень, а часть - отрицательную.
    • Степень окисления элементарных соединений всегда равна нулю. Простыми называются соединения, которые состоят из атомов одного элемента, то есть железо Fe2, кислород O2 или октасера S8.

    Существуют химические элементы, электрический заряд которых однозначен в любых соединениях. К таким относятся:

    • -1 - F;
    • -2 - О;
    • +1 - H, Li, Ag, Na, K;
    • +2 - Ba, Ca, Mg, Zn;
    • +3 - Al.

    Несмотря на однозначность, существуют некоторые исключения. Фтор F -уникальный элемент, степень окисления которого всегда составляет -1. Благодаря этому свойству многие элементы изменяют свой заряд в паре с фтором. Например, кислород в соединении с фтором имеет заряд +1 (O 2 F 2) или +2 (ОF2). Кроме того, кислород меняет свою степень в перекисных соединениях (в перекиси водорода H202 заряд равен -1). И, естественно, кислород имеет нулевую степень в своем простом соединении O2.

    При рассмотрении окислительно-восстановительных реакций важно учитывать вещества, которые состоят из ионов. Атомы ионных химических элементов имеют степень окисления, равную заряду иона. Например, в соединении гидрида натрия NaH по идее водород имеет степень +1, однако ион натрия также имеет заряд +1. Так как соединение должно быть электрически нейтральным, то атом водорода принимает заряд -1. Отдельно в этой ситуации стоят ионы металлов, так как атомы таких элементов ионизируются на разные величины. К примеру, железо F ионизируется и на +2, и на +3 в зависимости от состава химического вещества.

    Пример определения степеней окисления

    Для простых соединений, которые включают в себя атомы с однозначным зарядом, распределение степеней окисления не составляет труда. Например, для воды H2O атом кислорода имеет заряд -2, а атом водорода +1, что в сумме дает нейтральный нуль. В более сложных соединениях встречаются атомы, которые могут иметь разный заряд и для определения степеней окисления приходится использовать метод исключения. Рассмотрим пример.

    Сульфат натрия Na 2 SO 4 имеет в своем составе атом серы, заряд которого может принимать значения -2, +4 или +6. Какое значение выбрать? Первым делом определяем, что ион натрия имеет заряд +1. Кислород в подавляющем большинстве случаев имеет заряд –2. Составляем простое уравнение:

    1 × 2 + S + (–2) × 4 = 0

    Таким образом, заряд серы в сульфате натрия равен +6.

    Расстановка коэффициентов по схеме реакции

    Теперь, когда вы знаете, как определять заряды атомов, вы можете расставлять коэффициенты в окислительно-восстановительных реакциях для их балансировки. Стандартное задание по химии: подобрать коэффициенты реакции при помощи метода электронного баланса. В этих заданиях вам нет нужды определять, какие вещества образуются на выходе реакции, так как результат уже известен. Например, определите пропорции в простой реакции:

    Na + O2 → Na 2 O

    Итак, определим заряд атомов. Так как натрий и кислород в левой части уравнения - простые вещества, то их заряд равен нулю. В оксиде натрия Na2O кислород имеет заряд -2, а натрий +1. Мы видим, что в левой части уравнения натрий имеет нулевой заряд, а в правой – положительный +1. То же самое с кислородом, который изменил степень окисления с нуля до -2. Запишем это «химическим» языком, указав в скобках заряды элементов:

    Na(0) – 1e = Na(+1)

    O(0) + 2e = O(–2)

    Для балансировки реакции требуется уравновесить кислород и добавить коэффициент 2 к оксиду натрия. Получим реакцию:

    Na + O2 → 2Na2O

    Теперь у нас дисбаланс по натрию, уравновесим его при помощи коэффициента 4:

    4Na + O2 → 2Na2O

    Теперь количество атомов элементов совпадают с обеих сторон уравнения, следовательно, реакция сбалансирована. Все это мы проделали вручную, и это было несложно, так как реакция сама по себе элементарна. Но что делать, если требуется сбалансировать реакцию вида K 2 Cr 2 O 7 + KI + H 2 SO 4 → Cr 2 (SO 4)3 + I2 + H 2 O + K 2 SO 4 ? Ответ прост: используйте калькулятор.

    Калькулятор балансирования окислительно-восстановительных реакций

    Наша программа позволяет автоматически расставить коэффициенты для самых распространенных химических реакций. Для этого вам необходимо вписать в поле программы реакцию или выбрать ее из раскрывающегося списка. Для решения выше представленной окислительно-восстановительной реакции вам достаточно выбрать ее из списка и нажать на кнопку «Рассчитать». Калькулятор мгновенно выдаст результат:

    K 2 Cr 2 O 7 + 6KI + 7H 2 SO 4 → Cr 2 (SO 4)3 + 3I2 + 7H 2 O + 4K 2 SO 4

    Использование калькулятора поможет вам быстро сбалансировать наиболее сложные химические реакции.

    Заключение

    Умение балансировать реакции необходимо всем школьникам и студентам, которые мечтают связать свою жизнь с химией. В целом расчеты выполняются по строго определенным правилам, для понимания которых достаточно элементарных знаний по химии и алгебре: помнить, что сумма степеней окисления атомов соединения всегда равна нулю и уметь решать линейные уравнения.