Основные узлы установки и их назначение уэцн. Электроцентробежные насосы (эцн) Эцн насос для нефтяной промышленность

Компания «Борец» выпускает широкую линейку погружных насосов производительностью от 10 до 6128 м 3 /сут и напором от 100 до 3500 м.

Компания «Борец» рекомендует определенный эксплуатационный диапазон для всех насосов. Для обеспечения оптимальной эффективности и максимального межремонтного периода необходимо эксплуатировать насос в пределах этого диапазона.

Для достижения наилучших результатов эксплуатации насосов в реальных скважинных условиях и удовлетворения требований Заказчика, наша компания предлагает несколько типов сборки и конструкций ступеней насоса.

Насосы компании «Борец» могут эксплуатироваться в осложненных условиях, включая повышенное содержание мехпримесей, газосодержание и температуру перекачиваемой жидкости. Для повышения эксплуатационной надежности при работе в условиях повышенного абразивного воздействия среды, применяются насосы компрессионного, абразивостойкого компрессионного и пакетного типа сборки.

В насосах компании «Борец» используются ступени следующих наименований, которые отличаются друг от друга конструкцией:

  • ЭЦНД – двухопорная рабочая ступень.
  • ЭЦНМИК – ступень одноопорной конструкции с разгруженным рабочим колесом с удлиненной ступицей.
  • ЭЦНДП – двухопорная ступень, получаемая методом порошковой металлургии.
    Насосы со ступенями ЭЦНДП характеризуются высокой стойкостью к коррозии, износу в парах трениях и гидроабразивному износу.В дополнение к этому, за счет чистоты проточных каналов рабочего колеса ступени, данные насосы обладают повышенной эффективностью энергосбережения.

Головки и основания насосов изготавливаются из высокопрочной стали. Для агрессивных скважинных условий головки и основания изготавливаются из коррозионностойких сталей. При работе в осложненных условиях в насосах устанавливаются радиальные подшипники из сплава карбида вольфрама, предотвращающие радиальный износ и вибрацию. Для эксплуатации УЭЦН в агрессивных средах, компания «Борец» применяет коррозионностойкие и износостойкие металлизированные покрытия, наносимые на корпус и концевые детали. Данные покрытия обладают высокой твердостью и пластичностью, что исключает их растрескивания при изгибах оборудования во время спускоподъемных операций.

Для снижения солеотложения и предотвращения коррозии деталей ЭЦН при работе оборудования в агрессивной химической среде при повышенных температурах, компания «Борец» разработала антисолевое полимерное покрытие. Покрытие наносится на ступени, трубы, концевые детали и крепеж. Использование покрытия снижает солеотложения на ступенях насоса, а так же повышает коррозионную, химическую и износостойкости.

Скважинные центробежные насосы являются многоступен-чатыми машинами. Это обусловлено в первую очередь малыми значениями напора, создаваемым одной ступенью (рабочим ко-лесом и направляющим аппаратом). В свою очередь небольшие значения напора одной ступени (от 3 до 6-7 м водяного столба) определяются малыми величинами внешнего диаметра рабочего колеса, ограниченного внутренним диаметром обсадной ко-лонны и размерами применяемого скважинного оборудования - кабеля, погружного двигателя и т.д.

Конструкция скважинного центробежного насоса может быть обычной и износостойкой, а также повышенной коррози-онной стойкости. Диаметры и состав узлов насоса в основном одинаковы для всех исполнений насоса.

Скважинный центробежный насос обычного исполнения предназначен для отбора из скважины жидкости с содержанием воды до 99%. Механических примесей в откачиваемой жидко-сти должно быть не более 0,01 массовых % (или 0,1 г/л), при этом твердость механических примесей не должна превышать 5 баллов по Моосу; сероводорода — не более 0,001%. По требова-ниям технических условий заводов-изготовителей, содержание свободного газа на приеме насоса не должно превышать 25%.

Центробежный насос коррозионностойкого исполнения предназначен для работы при содержании в откачиваемой пластовой жидкости сероводорода до 0,125% (до 1,25 г/л). Износостойкое исполнение позволяет откачивать жидкость с содержанием механических примесей до 0,5 г/л.

Ступени размещаются в расточке цилиндрического корпуса каждой секции. В одной секции насоса может размещаться от 39 до 200 ступеней в зависимости от их монтажной высоты. Максимальное количество ступеней в насосах достигает 550 штук.

Рис. 6.2. Схема скважинного центробежного насоса:

1 - кольцо с сегментами; 2,3 - гладкие шайбы; 4,5 - шайбы амортизаторы; 6 - верхняя опора; 7 - нижняя опора; 8 - пру-жинное кольцо опоры вала; 9 - дистанционная втулка; 10 -основание; 11 - шлицевая муфта.

Модульные ЭЦН

Для создания высоконапорных скважинных центробежных насосов в насосе приходится устанавливать множество ступеней (до 550). При этом они не могут разместиться в одном корпусе, поскольку длина такого насоса (15-20 м) затрудняет транспор-тировку, монтаж на скважине и изготовление корпуса.

Высоконапорные насосы составляются из нескольких сек-ций. Длина корпуса в каждой секции не более 6 м. Корпусные детали отдельных секций соединяются фланцами с болтами или шпильками, а валы шлицевыми муфтами. Каждая секция насо-са имеет верхнюю осевую опору вала, вал, радиальные опоры вала, ступени. Приемную сетку имеет только нижняя секция. Ловильную головку — только верхняя секция насоса. Секции высоконапорных насосов могут иметь длину меньшую, чем 6 м (обычно длина корпуса насоса составляет 3,4 и 5 м), в зависи-мости от числа ступеней, которые надо в них разместить.


Насос состоит из входного модуля (рис. 6.4), модуля секции (модулей-секций) (рис. 6.3), модуля головки (рис. 6.3), обрат-ного и спускного клапанов.

Допускается уменьшить число модулей-секций в насосе, соответственно укомплектовав погружной агрегат двигателем необходимой мощности.

Соединения модулей между собой и входного модуля с двигателем фланцевые. Соединения (кроме соединения входного модуля с двигателем и входного модуля с газосепа-ратором) уплотняют резиновыми кольцами. Соединение валов модулей-секций между собой, модуля-секции с валом входного модуля, вала входного модуля с валом гидрозащиты двигателя осуществляют с помощью шлицевых муфт.

Валы модулей-секций всех групп насосов, имеющих одина-ковые длины корпусов 3,4 и 5 м, унифицированы. Для защиты кабеля от повреждений при спускоподъемных операциях на основаниях модуля-секции и модуля-головки расположены съемные стальные ребра. Конструкция насоса позволяет без дополнительной разборки использовать модуль насосный газосепаратор, который устанавливается между модулем вход-ным и модулем-секцией.

Технические характеристики некоторых типоразмеров ЭЦН для добычи нефти, изготавливаемых российскими фир-мами по техническим условиям представлены в таблице 6.1 и рис. 6.6.

Напорная характеристика ЭЦН, как видно на при-веденных выше рисунках, может быть как с западающей левой ветвью характеристики (малодебитные насосы), моно-тонно падающей (в основном для среднедебитных устано-вок), так и с переменным знаком производной. Такой характери-стикой в основном обладают высоко дебитные насосы.

Мощностные характеристики практически всех ЭЦН имеют минимум при нулевой подаче (так называемый «режим закрытой задвижки»), что обуславливает применение обратного клапана в колонне НКТ над насосом.

Рабочая часть характеристики ЭЦН, рекомендуемая фирмами-изготовителями, очень часто не совпадает с рабочей частью характеристик, определяемой общими методиками насосостроения. В последнем случае границами рабочей части характеристики являются величины подач в (0,7-0,75)Q o и (1,25-1,3Q 0 , где Q 0 - подача насоса в оптимальном режиме работы, т.е. при максимальном значении КПД.

Погружные электродвигатели

Погружной электрический двигатель (ПЭД) — двигатель специальной конструкции и представляет собой асинхронный двухполюсный двигатель переменного тока с короткозамкнутым ротором. Двигатель заполнен маловязким маслом, которое выполняет функцию смазки подшипников ротора, отвода тепла к стенкам корпуса двигателя, омываемого потоком скважинной продукции.

Верхний конец вала электродвигателя подвешен на пяте скольжения. Ротор двигателя секционный; секции собраны на валу двигателя, изготовлены из пластин трансформаторного же-леза и имеют пазы, в которые вставлены алюминиевые стержни, закороченные с обеих сторон секции токопроводящими коль-цами. Между секциями вал опирается на подшипники. По всей длине вал электродвигателя имеет отверстие для циркуляции масла внутри двигателя, осуществляемой также через паз ста-тора. В нижней части двигателя имеется масляный фильтр.

Длина и диаметр двигателя определяют его мощность. Ско-рость вращения вала ПЭД зависит от частоты тока; при частоте переменного тока 50 Гц синхронная скорость составляет 3000 об/мин. Погружные электродвигатели маркируются с указани-ем мощности (в кВт) и наружного диаметра корпуса (мм), на-пример, ПЭД 65-117 — погружной электродвигатель мощностью 65 кВт и наружным диаметром 117 мм. Необходимая мощность электродвигателя зависит от подачи и напора погружного цен-тробежного насоса и может достигать сотен кВт.

Современные погружные электродвигатели комплектуются системами датчиков давления, температуры и других параме-тров, фиксируемых на глубине спуска агрегата, с передачей сигналов по электрическому кабелю на поверхность (станцию управления).

Двигатели мощностью более 180 кВт диаметром 123 мм, более 90 кВт диаметром 117 мм, 63 кВт диаметром 103 мм и мощностью 45 кВт диаметром 96 мм - секционные.

Секционные двигатели состоят из верхней и нижней секций, которые соединяются при монтаже двигателя на скважине. Каждая секция состоит из статора и ротора, устройство которых аналогично односекционному электродвигателю. Электриче-ское соединение секций между собой последовательное, вну-треннее и осуществляется с помощью 3-х наконечников. Герметизация соединения обеспечивается уплотнением при стыковке секций.

Для увеличения подачи и напора рабочей ступени цен-тробежного насоса применяют регуляторы частоты враще-ния. Регуляторы частоты вращения позволяют перекачивать среду в более широком диапазоне объемов, чем это возможно при постоянной скорости, а также осуществлять плавный контролируемый пуск погружного асинхронного двигателя с ограничением пусковых токов на заданном уровне. Это по-вышает надежность УЭЦН за счет снижения электрических нагрузок на кабель и обмотку двигателя при запуске установок, а также улучшает условия работы пласта при пуске скважины. Оборудование позволяет также в комплекте с установленной в УЭЦН системой телеметрии поддерживать заданный дина-мический уровень в скважине.

Одним из методов регулирования частоты вращения ротора УЭЦН является регулирование частоты питающего погружной двигатель электротока.

Оборудованием для обеспечения этого метода регулирова-ния оснащены станции управления российского производства СУРС-1 и ИРБИ 840.

Гидрозащита

Для увеличения работоспособности погружного электро-двигателя большое значение имеет надежная работа его гидро-защиты, предохраняющей электродвигатель от попадания в его внутреннюю полость пластовой жидкости и компенсирующей изменение объема масла в двигателе при его нагреве и охлаж-дении, а также при утечке масла через негерметичные элементы конструкции. Пластовая жидкость, попадая в электродвигатель, снижает изоляционные свойства масла, проникает через изоля-цию обмоточных проводов и приводит к короткому замыканию обмотки. Кроме того, ухудшается смазка подшипников вала двигателя.

В настоящее время на промыслах Российской Федерации широко распространена гидрозащита типа Г.

Гидрозащита типа Г состоит из двух основных сборочных единиц: протектора и компенсатора.

Основной объем узла гидрозащиты, формируемый эла-стичным мешком, заполнен жидким маслом. Через обратный клапан наружная поверхность мешка воспринимает давление продукции скважины на глубине спуска погружного агрегата. Та-ким образом, внутри эластичного мешка, заполненного жидким маслом, давление равно давлению погружения. Для создания избыточного давления внутри этого мешка на валу протектора имеется турбинка. Жидкое масло через систему каналов под избыточным давлением поступает во внутреннюю полость электродвигателя, что предотвращает попадание скважинной продукции внутрь электродвигателя.

Компенсатор предназначен для компенсации объема мас-ла внутри двигателя при изменении температурного режима электродвигателя (нагревание и охлаждение) и представляет собой эластичный мешок, заполненный жидким маслом и рас-положенный в корпусе. Корпус компенсатора имеет отверстия, сообщающие наружную поверхность мешка со скважиной. Внутренняя полость мешка связана с электродвигателем, а внешняя— со скважиной.

При охлаждении масла объем его уменьшается, и скважинная жидкость через отверстия в корпусе компенсатора входит в зазор между наружной поверхностью мешка и внутренней стенкой корпуса компенсатора, создавая тем самым условия полного заполнения внутренней полости погружного электродвигателя маслом. При нагревании масла в электродвигателе объем его увеличивается, и масло пере-текает во внутреннюю полость мешка компенсатора; при этом скважинная жидкость из зазора между наружной поверхностью мешка и внутренней поверхностью корпуса выдавливается через отверстия в скважину.

Все корпуса элементов погружного агрегата соединяются между собой фланцами со шпильками. Валы погружного насоса, узла гидрозащиты и погружного электродвигателя соединяются между собой шлицевыми муфтами. Таким образом, погружной агрегат УЭЦН представляет собой комплекс сложных электрических, механических и ги-дравлических устройств высокой надежности, что требует от персонала высокой квалификации.

Обратный и спускной клапаны

Обратный клапан служит для предотвращения обратного вращения (турбинный режим) ротора насоса под воздействием столба жидкости в колонне НКТ при остановках и облегчения повторного запуска насосного агрегата. Остановки погруж-ного агрегата происходят по многим причинам: отключение электроэнергии при аварии на силовой линии; отключение из-за срабатывания защиты ПЭД; отключение при периодической эксплуатации и т.п. При остановке (обесточивании) погружного агрегата столб жидкости из НКТ начинает стекать через насос в скважину, раскручивая вал насоса (а значит, и вал погруж-ного электродвигателя) в обратном направлении.

Если в этот период возобновляется подача электроэнергии, ПЭД начинает вращаться в прямом направлении, преодолевая огромную силу. Пусковой ток ПЭД в этот момент может превысить допустимые пределы, и, если не сработает защита, электродвигатель выходит из строя. Спускной клапан предназначен для слива жидкости из колонны НКТ при подъеме насосного агрегата из скважины. Обратный клапан ввинчен в модуль-головку насоса, а спускной - в корпус обратного клапана. Допускается устанавливать кла-паны выше насоса в зависимости от значения газосодержания у сетки входного модуля насоса.

При этом клапаны должны располагаться ниже сростки основного кабеля с удлинителем, так как в противном случае поперечный габарит насосного агрегата будет превышать до-пустимый.

Обратные клапана насосов 5 и 5А рассчитаны на любую подачу, группы 6 - на подачу до 800 м 3 /сут включительно. Конструктивно они одинаковы и имеют резьбу муфты и насосно-компрессорной гладкой трубы диаметром 73 мм. Об-ратный клапан для насосов группы 6, рассчитанный на подачу свыше 800 м 3 /сут, имеет резьбу муфты и НКТ гладкой трубы диаметром 89 мм.

Спускные клапана имеют такие же исполнения по резьбам, как и обратные. В принципе спускной клапан - это муфта, в боковую стенку которой вставлена горизонтально короткая бронзовая трубка (штуцер), запаянная с внутреннего конца. От-верстие в этом клапане вскрывают при помощи металлического стержня диаметром 35 мм и длиной 650 мм, сбрасываемого в трубу с поверхности. Стержень, ударяясь о штуцер, отламы-вает его в месте надреза и открывает отверстие в клапане.

В результате жидкость перетекает в эксплуатационную колонну. Применение такого спускного клапана не рекомендуется, если в установке используют скребок для очистки труб от парафина. При обрыве проволоки, на которой спускается скребок, он па-дает и ломает штуцер, происходит самопроизвольный перепуск жидкости в скважину, что приводит к необходимости подъема агрегата. Поэтому применяют спускные клапаны и других типов, приводимые в действие за счет повышения давления в трубах, без спуска металлического стержня.

Трансформаторы

Трансформаторы предназначены для питания установок погружных центробежных насосов от сети переменного тока напряжением 380 или 6000 В частотой 50 Гц. Трансформатор повышает напряжение, чтобы двигатель на вводе в обмотку имел заданное номинальное напряжение. Рабочее напряжение двигателей составляет 470-2300 В. Кроме того, учитывается снижение напряжения в длинном кабеле (от 25 до 125 В/км).

Трансформатор состоит из магнитопровода, обмоток вы-сокого напряжения (ВН) и низкого напряжения (НН), бака, крышки с вводами и расширителя с воздухоосушителем, пере-ключателя. Трасформаторы выполняются с естественным мас-ляным охлаждением. Они предназначены для установки на от-крытом воздухе. На высокой стороне обмоток трансформатора имеется 5-10 ответвлений, обеспечивающих подачу оптималь-ного напряжения на электродвигатель. Масло, заполняющее трансформатор, имеет пробивное напряжение 40 кВ.

Станция управления

Станция управления предназначена для управления рабо-той и защиты У ЭЦН и может работать в ручном и автоматиче-ском режимах. Станция оснащена необходимыми контрольно-измерительными системами, автоматами, всевозможными реле (максимальные, минимальные, промежуточные реле времени и т.п.). При возникновении нештатных ситуаций срабатывают соответствующие системы защиты, и установка отключается.

Станция управления выполнена в металлическом ящике, может устанавливаться на открытом воздухе, но часто разме-щается в специальной будке.

Кабельные линии

Кабельные линии предназначены для подачи электроэнер-гии с поверхности земли (от комплектных устройств и станций управления) к погружному электродвигателю.

К ним предъявляются достаточно жесткие требования — малые электрические потери, малые диаметральные габариты, хорошие диэлектрические свойства изоляции, термостойкость к низким и высоким температурам, хорошая сопротивляемость воздействию пластовой жидкости и газа и т.д.

Кабельная линия состоит из основного питающего кабеля (круглого или плоского) и соединенного с ним плоского кабеля-удлинителя с муфтой кабельного ввода.

Соединение основного кабеля с кабелем-удлинителем обе-спечивается неразъемной соединительной муфтой (сросткой). С помощью сростки могут быть соединены также участки основного кабеля для получения требуемой длины.

Кабельная линия на основной длине чаще всего имеет се-чение круглое или близкое к треугольному.

Для сокращения диаметра погружного агрегата (кабель+центробежный насос) нижняя часть кабеля имеет плоское сечение.

Кабель выпускается с полимерной изоляцией, которая на-кладывается на жилы кабеля в два слоя. Три изолированные жилы кабеля соединяются вместе, накрываются предохраняю-щей подложкой под броню и металлической броней. Металличе-ская лента брони предохраняет изоляцию жил от механических повреждений при хранении и работе, в первую очередь — при спуске и подъеме оборудования.

В прошлом бронированный кабель выпускался с резиновой изоляцией и защитным резиновым шлангом. Однако в скважине резина насыщалась газом и при подъеме кабеля на поверхность газ разрывал резину и броню кабеля. Применение пластмас-совой изоляции кабеля позволило существенно снизить этот недостаток.

У погружного двигателя кабельная линия заканчивается штепсельной муфтой, которая обеспечивает герметичное соеди-нение с обмоткой статора двигателя.

Верхний конец кабельной линии проходит через специаль-ное устройство в оборудовании устья скважины, которым обе-спечивается герметичность затрубного пространства, и соединя-ется через клеммную коробку с электрической линией станции управления или комплектного устройства. Клеммная коробка предназначена для предупреждения попадания нефтяного газа из полости кабельной линии в трансформаторные подстанции, комплектные устройства и шкафы станций управления.

Кабельная линия в состоянии транспортирования и хра-нения располагается на специальном барабане, используемом также при спусках и подъемах установок на скважинах, про-филактических и ремонтных работах с кабельной линией.

Выбор конструкций кабельных линий зависит от условий эксплуатации установок ЭЦН, в первую очередь, от температу-ры скважинной продукции. Часто кроме пластовой температуры используется расчетная величина снижения этой температуры за счет температурного градиента, а также повышение темпера-туры окружающей среды и самого скважинного агрегата за счет нагрева погружного электродвигателя и центробежного насоса. Повышение температуры может быть довольно значительным и составлять 20-30 °С. Другим критерием выбора конструкции кабеля является температура окружающего воздуха, которая влияет на работоспособность и долговечность изоляционных материалов кабельных линий.

Важными факторами влияющими на выбор конструкции кабеля являются свойства пластового флюида - коррозионная активность, обводненность, газовый фактор.

Для сохранения целостности кабеля и его изоляции при спускоподъемных операциях необходимо кабель фиксировать на колонне. НКТ. При этом необходимо применять фикси-рующие приспособления вблизи участка изменения диаметра колонны, т.е. около муфты или высадки под резьбу. При фик-сации кабеля необходимо следить за тем, чтобы кабель плотно прилегал к трубам, а в случае применения плоского кабеля надо следить за тем, чтобы кабель не был перекручен.

Простейшими приспособлениями для крепления кабелей к насосно-компрессорным трубам (НКТ) и узлам погружного насосного агрегата УЭЦН являются металлические пояса с пряжками или клямсы.

Крепление кабеля-удлинителя к узлам погружного агрегата (погружного насоса, протектора и двигателя) осуществляется в местах, указанных в руководствах по эксплуатации данного вида оборудования; крепление кабеля-удлинителя и основного кабеля к НКТ осуществляется по обе стороны каждой муфты НКТ на расстоянии 200-250 мм от верхнего и нижнего торцов муфты

Эксплуатация установок УЭЦН в наклонно -и криволиней-ных скважинах потребовала создания приспособлений для кре-пления кабелей и защиты их от механических повреждений.

Российским предприятием ЗАО "Ижспецтехнология" (г. Ижевск) разработаны и производятся защитные устройства (ЗУ), состоящие из корпуса и механических замков (рис. 6.9).

Данное устройство устанавливается на муфте НКТ и об-ладает следующими техническими особенностями:

Обеспечивает простую и надежную фиксацию (осевую и радиальную) на НКТ;

Надежно удерживает и защищает кабель, в том числе в аварийных ситуациях;

Не имеет сборно-разборных элементов (винтов, гаек, шплинтов и др.), что исключает их попадание в скважину при монтаже и спуско-подъмных операциях;

Предполагает многократное использование;

Монтаж устройства не требует слесарно-монтажного инструмента.

Среди ведущих фирм мира наибольший опыт в разработке, производстве и эксплуатации защитных устройств для кабелей имеет фирма Lasalle (Шотландия) (рис. 6.10).

Цельнометаллические литые протекторы Lasalle отличают следующие характеристики:

Скорость и простота монтажа;

Пригодность к эксплуатации в высокосернистой скважинной среде;

Отсутствие незакрепленных элементов, могущих упасть в скважину;

Возможность многократного использования.

Фирма Lasalle предлагает протекторы для защиты основно-го кабеля (плоского и круглого) и кабеля-удлинителя на участ-ках колонны НКТ, погружного агрегата установки, обратного и спускного клапанов.

Погружные центробежные электронасосы для добычи нефти предназначены для эксплуатации нефтяных, подчас сильно обводненных, скважин малого диаметра и большой глубины, они должны обеспечивать безотказную и длительную работу в жидкостях, содержащих агрессивные пластовые воды с растворенными в них различными солями, газы (в том числе сероводород), механические примеси, преимущественно в виде песка.

Рисинок 5 Принципиальная схема УЭЦН

1 - автотрансформатор; 2 - станция управления; 3 - кабельный барабан; 4 - оборудование устья скважины; 5 - колонна НКТ; 6 - бронированный электрический кабель; 7 - зажимы для кабеля; 8 - погружной многоступенчатый центробежный насос; 9 - приемная сетка насоса; 10 -обратный клапан; 11 -сливной клапан; 12 -узел гидрозащиты (протектор); 13 - погружной электродвигатель; 14 - компенсатор.

Установка ЭЦН состоит из погружного агрегата, оборудования устья, электрооборудования и колонны НКТ.

Погружной агрегат включает в себя электроцентробежный насос, гидрозащиту и электродвигатель. Он (агрегат) спускается в скважину на колонне НКТ, которая подвешивается с помощью устьевого оборудования, устанавливаемого на колонной головке эксплуатационной колонны.

Электроэнергия от промысловой сети через трансформатор и станцию управления по кабелю, прикрепленному к наружной поверхности НКТ крепежными поясами (хомутами), подается на электродвигатель, с ротором которого связан вал центробежного электронасоса. ЭЦН подает жидкость по колонне НКТ на поверхность. Выше насоса установлен обратный клапан, облегчающий пуск установки после ее простоя, а над обратным клапаном спускной клапан для слива жидкости из НКТ при их подъеме.

Погружной насос, электродвигатель и гидрозащита соединяются между собой фланцами и шпильками. Валы насоса, двигателя и гидрозащиты имеют на концах шлицы и соединяются между собой шлицевыми муфтами.

Насос погружают под уровень жидкости в зависимости от количества свободного газа на глубину до 250 - 300 м, а иногда до 600 м.

Для привода ЭЦН применяют асинхронные двигатели трехфазного тока с короткозамкнутыми роторами в герметичном исполнении, маслозаполненные.

Для предохранения электродвигателя от попадания в его внутреннюю полость пластовой жидкости и компенсации изменения объема масла в двигателе при его нагреве и охлаждении, а также при утечке масла через неплотности служит гидрозащита. Гидрозащита включает в себя протектор и компенсатор.

Электроэнергия подводится к погружному двигателю по специальному трехжильному кабелю. Сечение токопроводящих жил кабеля выбирают в зависимости от мощности погружного электродвигателя и глубины его спуска.

Для подержания необходимого напряжения на зажиме погружного электродвигателя при изменениях потерь напряжения в кабеле и других элементах питающей сети, а также для возможности питания ПЭД с различными номинальными напряжениями при стандартных напряжениях промысловых сетей применяются автотрансформаторы и трансформаторы.

Управление и защита электродвигателей погружных центробежных насосов осуществляется с помощью комплекса аппаратуры, смонтированной в станции управления. Станция управления с помощью специального переключателя дает возможность установить три режима работы управления: ручной, автоматический и программный.

Основными параметрами центробежных насосов являются его подача Q(в м 3 /сут) и развиваемый напорH(в м). Величина напора характеризует высоту, на которую жидкость может быть поднята данным насосом. Напор насоса и его подача взаимозависимые величины: чем выше развиваемый напор, тем ниже его подача. В паспортных данных насоса обычно указывается значения напора насоса и его подачи при максимальном к.п.д. установки.

Рис. 3 Погружной центробежный насос

1 - входной модуль; 2 - модуль-секция; 3 - модуль-головка

Погружные центробежные насосы предназначены для откачки пластовой жидкости из нефтяных скважин. Приводом насосов являются погружные асинхронные двигатели (ПЭД). Погружные центробежные насосы для добычи нефти производятся в соответствии с документацией. В зависимости от поперечного габарита насосы подразделяются на группы 4, 5, 5А и 6. В ОАО «Татнефть» на нефтяных скважинах используются насосы двух групп - 5 и 5А.

Группа насоса условно определяет минимальный внутренний диаметр эксплуатационной колонны скважины.

Диаметры корпусов насосов в группе:

5А - 103 мм

Разные исполнения насосов в основном отличаются конструкцией и используемыми материалами ступеней и их элементов, осевых и радиальных опор валов насосов, входного модуля, материалом валов, но конструктивная схема насосов всех исполнений одинакова при разных вариантах конструктивного исполнения насосов, обозначаемых цифрами от 1 до 4, которые указывают, что в составе насоса:

    Входной модуль, соединение секций фланцевое;

    Входной модуль, соединение секций типа «фланец-корпус»;

    Нижняя секция с приёмной сеткой, соединение секций фланцевое;

    Нижняя секция с приёмной сеткой, соединение секций типа «фланец-корпус».

    Структура условного обозначения насосов

    Погружной насос собирается из соединенных между собой модуль-секций (в зависимости от напора их количество может изменяться от 1 до 4), к которым снизу присоединяется входной модуль, а сверху - модуль–головка. Кроме того, в состав насоса входят обратный и сливной клапаны.

Модуль секция является основной частью насоса и состоит из корпуса, вала, пакета ступеней (рабочих колёс и направляющих аппаратов), верхнего и нижнего радиальных подшипников, верхней осевой опоры, головки и основания. Пакет ступеней с валом, радиальными подшипниками и осевой опорой помещаются в корпусе и зажимаются концевыми деталями. Соединение валов модуль-секций, модуля-секции с входным модулем, входного модуля с валом гидрозащиты и гидрозащиты с погружным двигателем осуществляется при помощи шлицевых муфт.

При вращении рабочих колёс перекачиваемая жидкость через входной модуль поступает на первую ступень насоса и получает приращение напора от ступени к ступени. Верхний, промежуточный и нижний подшипники являются радиальными опорами вала, а верхняя осевая опора воспринимает нагрузки, действующие вдоль оси вала (или осевые нагрузки).

Соединения составных частей УЭЦН герметизируются резиновыми кольцами.

Входной модуль (рис. 4) состоит из основания с отверстиями для прохода пластовой жидкости, закрытыми сеткой для предотвращения попадания в полость насоса мусора. В подшипниках основания вращается вал, который при помощи шлицевых муфт соединяется с валом гидрозащиты электродвигателя.

Модуль головка (рис. 5) состоит из корпуса 1, с одной стороны которого выполнена внутренняя коническая резьба для соединения с колонной НКТ, с другой - фланец для соединения с модуль-секцией.

Обратный клапан (рис. 6) предназначен для предотвращения обратного вращения установки под воздействием столба жидкости при остановках и облегчения запуска установки. Кроме того, он используется для опрессовки НКТ после спуска установки в скважину. Обратный клапан состоит из корпуса, с одной стороны которого выполнена внутренняя, с другой - наружная конические резьбы для подсоединения к колонне НКТ. Внутри корпуса размещается обрезиненное седло 2, на которое опирается тарельчатый запорный орган 3, имеющий возможность осевого перемещения в направляющий втулке 4. Под воздействием потока перекачиваемой жидкости клапан открывается, при остановке насоса - закрывается.

Рис. 4 Входной модуль Рис 5 Модуль-головка

Обратный клапан устанавливается на первой над насосом трубе колонны НКТ, комплектация им электропогружных установок является обязательной. Сливной клапан (рис. 6) предназначен для слива жидкости из колонны НКТ при подъеме насоса из скважины и устанавливается на второй или третьей трубе колонны НКТ выше обратного клапана для того, чтобы, при необходимости, имелась возможность установки между ними шламоуловителя.


Рис. 5 - Обратный клапан Рис. 6 - Сливной клапан

Сливной клапан состоит из корпуса 1, имеющего аналогичные с обратным клапаном резьбы. В корпус вворачивается штуцер 2, который уплотнён резиновым кольцом 3.

Перед подъёмом насоса из скважины штуцер сбивается специальным инструментом, сбрасываемым в НКТ. Жидкость через отверстие в штуцере вытекает из НКТ в затрубное пространство.

Схема УЭЦН

УЭЦН – установка электроцентробежного насоса, в английском варианте - ESP (electric submersible pump). По количеству скважин, в которых работают такие насосы, они уступают установкам ШГН, но зато по объемам добычи нефти, которая добывается с их помощью, УЭЦН вне конкуренции. С помощью УЭЦН добывается порядка 80% всей нефти в России.

В общем и целом УЭЦН - обычный насосный агрегат, только тонкий и длинный. И умеет работать в среде отличающейся своей агрессивностью к присутствующим в ней механизмам. Состоит он из погружного насосного агрегата (электродвигатель с гидрозащитой + насос), кабельной линии, колонны НКТ, оборудования устья скважины и наземного оборудования (трансформатора и станции управления).

Основные узлы УЭЦН:

ЭЦН (электроцентробежный насос) – ключевой элемент установки, который собственно и осуществляет подъем жидкости из скважины на поверхность. Состоит он из секций, которые в свою очередь состоят из ступеней (направляющих аппаратов) и большого числа рабочих колес собранных на валу и заключенных в стальной корпус (трубу). Основные характеристики ЭЦН – это дебит и напор, поэтому в названии каждого насоса присутствуют эти параметры. Например, ЭЦН-60-1200 перекачивает 60 м 3 /сут жидкости с напором 1200 метров.

ПЭД (погружной электродвигатель) – второй по важности элемент. Представляет собой асинхронный электродвигатель, заполненный специальным маслом.

Протектор (или гидрозащита) – элемент, расположенный между электродвигателем и насосом. Отделяет электродвигатель, заполненный маслом от насоса заполненного пластовой жидкостью и при этом передает вращение от двигателя к насосу.

Кабель , с помощью которого к погружному электродвигателю подводится электроэнергия. Кабель бронированный. На поверхности и до глубины спуска насоса он круглого сечения (КРБК), а на участке погружного агрегата вдоль насоса и гидрозащиты - плоский (КПБК).

Дополнительное оборудование:

Газосепаратор – используется для снижения количества газа на входе в насос. Если необходимости в снижении количества газа нет, то используется простой входной модуль, через который в насос поступает скважинная жидкость.

ТМС – термоманометрическая система. Градусник и манометр в одном лице. Выдает нам на поверхность данные о температуре и давлении той среды, в которой работает спущенный в скважину ЭЦН.

Вся эта установка собирается непосредственно при ее спуске в скважину. Собирается последовательно снизу вверх не забывая про кабель, который пристегивается к самой установке и к НКТ, на которых все это и висит, специальными металлическими поясами. На поверхности кабель запитывается на устанавливаемые вблизи куста повышающий трансформатор (ТМПН) и станцию управления.

Помимо уже перечисленных узлов в колонне насосно-компрессорных труб над электроцентробежным насосом устанавливаются обратный и сливной клапаны.

Обратный клапан (КОШ - клапан обратный шариковый) используется для заполнения насосно-компрессорных труб жидкостью перед пуском насоса. Он же не позволяет жидкости сливаться вниз при остановках насоса. Во время работы насоса обратный клапан находится в открытом положении под действием давления снизу.

Над обратным клапаном монтируется сливной клапан (КС) , который используется для спуска жидкости из НКТ перед подъемом насоса из скважины.

Электроцентробежные погружные насосы имеют значительные преимущества перед глубинными штанговыми насосами:

  • Простота наземного оборудования;
  • Возможность отбора жидкости из скважин до 15000 м 3 /сут;
  • Возможность использовать их на скважинах с глубиной более 3000 метров;
  • Высокий (от 500 суток до 2-3 лет и более) межремонтный период работы ЭЦН;
  • Возможность проведения исследований в скважинах без подъема насосного оборудования;
  • Менее трудоемкие методы удаления парафина со стенок насосно-компрессорных труб.

Электроцентробежные погружные насосы могут применяться в глубоких и наклонных нефтяных скважинах (и даже в горизонтальных), в сильно обводненных скважинах, в скважинах с йодо-бромистыми водами, с высокой минерализацией пластовых вод, для подъема соляных и кислотных растворов. Кроме того, разработаны и выпускаются электроцентробежные насосы для одновременно-раздельной эксплуатации нескольких горизонтов в одной скважине со 146 мм и 168 мм обсадными колоннами. Иногда электроцентробежные насосы применяются также для закачки минерализованной пластовой воды в нефтяной пласт с целью поддержания пластового давления.