Бестрансформаторное питание схем. Ламповый усилитель без анодного трансформатора Принцип работы схемы

Напряжение 12 Вольт используется для питания большого количества электроприборов: приемники и магнитолы, усилители, ноутбуки, шуруповерты, светодиодные ленты и прочее. Часто они работают от аккумуляторов или от блоков питания, но когда те или другие выходят из строя перед пользователем возникает вопрос: «Как получить 12 Вольт переменного тока»? Об этом мы расскажем далее, предоставив обзор наиболее рациональных способов.

Получаем 12 Вольт из 220

Наиболее часто стоит задача получить 12 вольт из бытовой электросети 220В. Это можно сделать несколькими способами:

  1. Понизить напряжение без трансформатора.
  2. Использовать сетевой трансформатор 50 Гц.
  3. Использовать импульсный блок питания, возможно в паре с импульсным или линейным преобразователем.

Понижение напряжения без трансформатора

Преобразовать напряжение из 220 Вольт в 12 без трансформатора можно 3-мя способами:

  1. Понизить напряжение с помощью балластного конденсатора. Универсальный способ используется для питания маломощной электроники, например светодиодных ламп, и для заряда небольших аккумуляторов, как в фонариках. Недостатком является низкий косинус Фи у схемы и невысокая надежность, но это не мешает её повсеместно использовать в дешевых электроприборах.
  2. Понизить напряжение (ограничить ток) с помощью резистора. Способ не очень хороший, но имеет право на существование, подойдет, чтобы запитать какую-то очень слабую нагрузку, типа светодиода. Его основной недостаток – это выделение большого количества активной мощности в виде тепла на резисторе.
  3. Использовать автотрансформатор или дроссель с подобной логикой намотки.

Гасящий конденсатор

Прежде чем приступить к рассмотрению этой схемы предварительно стоит сказать об условиях, которые вы должны соблюдать:

  • Блок питания не универсальный, поэтому его рассчитывают и используют только для работы с одним заведомо известным прибором.
  • Все внешние элементы блока питания, например регуляторы, если вы будете использовать дополнительные компоненты для схемы, должны быть изолированы, а на металлических ручках потенциометров надеты пластиковые колпачки. Не касайтесь платы блока питания и проводов для подключения выходного напряжения, если к ним не подключена нагрузка или если в схеме не установлен стабилитрон или стабилизатор для низкого постоянного напряжения.

Тем не менее, такая схема вряд ли вас убьёт, но удар электрическим током получить можно.

Схема изображена на рисунке ниже:

R1 – нужен для разрядки гасящего конденсатора, C1 – основной элемент, гасящий конденсатор, R2 – ограничивает токи при включении схемы, VD1 – диодный мост, VD2 – стабилитрон на нужное напряжение, для 12 вольт подойдут: Д814Д, КС207В, 1N4742A. Можно использовать и линейный преобразователь.

Или усиленный вариант первой схемы:

Номинал гасящего конденсатора рассчитывают по формуле:

С(мкФ) = 3200*I(нагрузки)/√(Uвход²-Uвыход²)

С(мкФ) = 3200*I(нагрузки)/√Uвход

Но можно и воспользоваться калькуляторами, они есть в онлайн или в виде программы для ПК, например как вариант от Гончарука Вадима, можете поискать в интернете.

Конденсаторы должны быть такими – пленочными:

Или такие:

Остальные перечисленные способы рассматривать не имеет смысла, т.к. понижение напряжения с 220 до 12 Вольт с помощью резистора не эффективно ввиду большого тепловыделения (размеры и мощность резистора будут соответствующие), а мотать дроссель с отводом от определенного витка чтобы получить 12 вольт нецелесообразно ввиду трудозатрат и габаритов.

Блок питания на сетевом трансформаторе

Классическая и надежная схема, идеально подходит для питания усилителей звука, например колонок и магнитол. При условии установки нормального фильтрующего конденсатора, который обеспечит требуемый уровень пульсаций.

В дополнение можно установить стабилизатор на 12 вольт, типа КРЕН или L7812 или любой другой для нужного напряжения. Без него выходное напряжение будет изменяться соответственно скачкам напряжения в сети и будет равно:

Uвых=Uвх*Ктр

Ктр – коэффициент трансформации.

Здесь стоит отметить, что выходное напряжение после диодного моста должно быть на 2-3 вольта больше, чем выходное напряжение БП – 12В, но не более 30В, оно ограничено техническими характеристиками стабилизатора, и КПД зависит от разницы напряжений между входом и выходом.

Трансформатор должен выдавать 12-15В переменного тока. Стоит отметить, что выпрямленное и сглаженное напряжение будет в 1,41 раз больше входного. Оно будет близко к амплитудному значению входной синусоиды.

Также хочется добавить схему регулируемого БП на LM317. С его помощью вы можете получить любое напряжение от 1,1 В до величины выпрямленного напряжения с трансформатора.

12 Вольт из 24 Вольт или другого повышенного постоянного напряжения

Чтобы понизить напряжение постоянного тока из 24 Вольт в 12 Вольт можно использовать линейный или импульсный стабилизатор. Такая необходимость может возникнуть, если нужно запитать 12 В нагрузку от бортовой сети автобуса или грузовика напряжением в 24 В. Кроме того вы получите стабилизированное напряжение в сети автомобиля, которое часто изменяется. Даже в авто и мотоциклах с бортовой сетью в 12 В оно достигает 14,7 В при работающем двигателе. Поэтому эту схему можно использовать и для питания светодиодных лент и светодиодов на транспортных средствах.

Схема с линейным стабилизатором упоминалась в предыдущем пункте.

К ней можно подключить нагрузку током до 1-1,5А. Чтобы усилить ток, можно использовать проходной транзистор, но выходное напряжение может немного снизится – на 0,5В.

Подобным образом можно использовать LDO-стабилизаторы, это такие же линейные стабилизаторы напряжения, но с низким падением напряжения, типа AMS-1117-12v.

Или импульсные аналоги типа AMSR-7812Z, AMSR1-7812-NZ.

Схемы подключения аналогичны L7812 и КРЕНкам. Также эти варианты подойдут и для понижения напряжения от блока питания от ноутбука.

Эффективнее использовать импульсные понижающие преобразователи напряжения, например на базе ИМС LM2596. На плате подписаны контактные площадки In (вход +) и (- Out выход) соответственно. В продаже можно найти версию с фиксированным выходным напряжением и с регулируемым, как на фото сверху в правой части вы видите многооборотный потенциометр синего цвета.

12 Вольт из 5 Вольт или другого пониженного напряжения

Вы можете получить 12В из 5В, например, от USB-порта или зарядного устройства для мобильного телефона, также можно использовать и с популярными сейчас литиевыми аккумуляторами с напряжением 3,7-4,2В.

Если речь вести о блоках питания, можно и вмешаться во внутреннюю схему, править источник опорного напряжения, но для этого нужно иметь определенные знания в электронике. Но можно сделать проще и получить 12В с помощью повышающего преобразователя, например на базе ИМС XL6009. В продаже имеются варианты с фиксированным выходом 12В либо регулируемые с регулировкой в диапазоне от 3,2 до 30В. Выходной ток – 3А.

Он продаётся на готовой плате, и на ней есть пометки с назначением выводов – вход и выход. Еще вариант — использовать MT3608 LM2977, повышает до 24В и выдерживает выходной ток до 2А. Также на фото отчетливо видны подписи к контактным площадкам.

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД. Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео

Чтобы использовать имеющийся в запасах силовой трансформатор, необходимо как можно точнее узнать его ключевые характеристики. С решением этой задачи практически никогда не возникает затруднений, если на изделии сохранилась маркировка. Требуемые параметры легко можно найти в Сети, просто введя в строку поиска выбитые на трансформаторе буквы и цифры.
Однако довольно часто маркировки нет – надписи затираются, уничтожаются коррозией и так далее. На многих современных изделиях (особенно на дешевых) маркировка не предусмотрена вообще. Выбрасывать в таких случаях трансформатор, конечно же, не стоит. Ведь его цена на рынке может быть вполне приличной.

Наиболее важные параметры силовых трансформаторов
Что же нужно знать о трансформаторе, чтобы корректно и, самое главное, безопасно использовать его в своих целях? Чаще всего это ремонт какой-либо бытовой техники или изготовление собственных поделок, питающихся невысоким напряжением. А знать о лежащем перед нами трансформаторе нужно следующее:

  • На какие выводы подавать сетевое питание (230 вольт)?
  • С каких выводов снимать пониженное напряжение?
  • Каким оно будет (12 вольт, 24 или другим)?
  • Какую мощность сможет выдать трансформатор?
  • Как не запутаться, если обмоток, а соответственно, и попарных выводов – несколько?
  • Все эти характеристики вполне реально вычислить даже тогда, когда нет абсолютно никакой информации о марке и модели силового трансформатора.
    Для выполнения работы понадобятся простейшие инструменты и расходные материалы:

    • мультиметр с функциями омметра и вольтметра;
    • паяльник;
    • изолента или термоусадочная трубка;
    • сетевая вилка с проводом;
    • пара обычных проводов;
    • лампа накаливания;
    • штангенциркуль;
    • калькулятор.


    Еще понадобится какой-либо инструмент для зачистки проводов и минимальный набор для пайки – припой и канифоль.
    Определение первичной и вторичной обмоток
    Первичная обмотка понижающего трансформатора предназначена для подачи сетевого питания. То есть именно к ней необходимо подключать 230 вольт, которые есть в обычной бытовой розетке. В самых простых вариантах первичная обмотка может иметь всего два вывода. Однако бывают и такие, в которых выводов, например, четыре. Это значит, что изделие рассчитано на работу и от 230 В, и от 110 В. Рассматривать будем вариант попроще.
    Итак, как определить выводы первичной обмотки трансформатора? Для решения этой задачи понадобится мультиметр с функцией омметра. С его помощью нужно измерить сопротивление между всеми имеющимися выводами. Где оно будет больше всего, там и есть первичная обмотка. Найденные выводы желательно сразу же пометить, например, маркером.


    Определить первичную обмотку можно и другим способом. Для этого намотанную проволоку внутри трансформатора должно быть хорошо видно. В современных вариантах чаще всего так и бывает. В старых изделиях внутренности могут оказаться залитыми краской, что исключает применение описываемого метода. Визуально выделяется та обмотка, диаметр проволоки которой меньше. Она является первичной. На нее и нужно подавать сетевое питание.
    Осталось вычислить вторичную обмотку, с которой снимается пониженное напряжение. Многие уже догадались, как это сделать. Во-первых, сопротивление у вторичной обмотки будет намного меньше, чем у первичной. Во-вторых, диаметр проволоки, которой она намотана – будет больше.


    Задача немного усложняется, если обмоток у трансформатора несколько. Особенно такой вариант пугает новичков. Однако методика их идентификации тоже очень проста, и аналогична вышеописанному. В первую очередь, нужно найти первичную обмотку. Ее сопротивление будет в разы больше, чем у оставшихся.
    В завершение темы по обмоткам трансформатора стоит сказать несколько слов о том, почему сопротивление первичной обмотки больше, чем у вторичной, а с диаметром проволоки все с точностью до наоборот. Это поможет начинающим детальнее разобраться в вопросе, что очень важно при работе с высоким напряжением.
    На первичную обмотку трансформатора подается сетевое напряжение 220 В. Это значит, что при мощности, например, 50 Вт через нее потечет ток силой около 0,2 А (мощность делим на напряжение). Соответственно, большое сечение проволоки здесь не нужно. Это, конечно же, очень упрощенное объяснение, но для начинающих (и решения поставленной выше задачи) этого будет достаточно.
    Во вторичной обмотке токи протекают более значительные. Возьмем самый распространенный трансформатор, который выдает 12 В. При той же мощности в 50 Вт ток, протекающий через вторичную обмотку, составит порядка 4 А. Это уже довольно большое значение, потому проводник, через который будет проходить такой ток, должен быть потолще. Соответственно, чем больше сечение проволоки, тем сопротивление ее будет меньше.
    Пользуясь этой теорией и простейшим омметром можно легко вычислять, где какая обмотка у понижающего трансформатора без маркировки.
    Определение напряжения вторичной обмотки
    Следующим этапом идентификации «безымянного» трансформатора будет определение напряжения на его вторичной обмотке. Это позволит установить, подходит ли изделие для наших целей. Например, вы собираете блок питания на 24 В, а трансформатор выдает только 12 В. Соответственно, придется искать другой вариант.


    Для определения напряжения, которое возможно снять со вторичной обмотки, на трансформатор придется подавать сетевое питание. Это уже довольно опасная операция. По неосторожности или незнанию можно получить сильный удар током, обжечься, повредить проводку в доме или сжечь сам трансформатор. Потому не лишним будет запастись несколькими рекомендациями относительно техники безопасности.
    Во-первых, при тестировании подсоединять трансформатор к сети следует через лампу накаливания. Она подключается последовательно, в разрыв одного из проводов, идущих к вилке. Лампочка будет служить в роли предохранителя на случай, если вы что-то сделаете неправильно, или же исследуемый трансформатор неисправен (закорочен, сгоревший, намокший и так далее). Если она светится, значит что-то пошло не так. На лицо короткое замыкание в трансформаторе, потому вилку из розетки лучше сразу же вытянуть. Если лампа не светится, ничего не воняет и не дымит – работу можно продолжать.
    Во-вторых, все соединения между выходами и вилкой должны быть тщательно заизолированы. Не стоит пренебрегать этой рекомендацией. Вы даже не заметите, как рассматривая показания мультиметра, например, возьметесь поправлять скручивающиеся провода, получите хорошенький удар током. Это опасно не только для здоровья, но и для жизни. Для изолирования используйте изоленту или термоусадочную трубку соответствующего диаметра.
    Теперь сам процесс. К выводам первичной обмотки припаивается обычная вилка с проводами. Как указано выше, в цепь добавляется лампа накаливания. Все соединения изолируются. К выводам вторичной обмотки подсоединяется мультиметр в режиме вольтметра. Обратите внимание на то, чтобы он был включен на измерение переменного напряжения. Начинающие часто допускают тут ошибку. Установив ручку мультиметра на измерение постоянного напряжения, вы ничего не сожжете, однако, на дисплее не получите никаких вменяемых и полезных показаний.


    Теперь можно вставлять вилку в розетку. Если все в рабочем состоянии, то прибор покажет вам выдаваемое трансформатором пониженное напряжение. Аналогично можно измерить напряжение на других обмотках, если их несколько.


    Простые способы вычисления мощности силового трансформатора
    С мощностью понижающего трансформатора дела обстоят немного сложнее, но некоторые простые методики, все же, есть. Самый доступный способ определить эту характеристику – измерение диаметра проволоки во вторичной обмотке. Для этого понадобится штангенциркуль, калькулятор и нижеприведенная информация.
    Сначала измеряется диаметр проволоки. Для примера возьмем значение в 1,5 мм. Теперь нужно вычислить сечение проволоки. Для этого необходимо половину диаметра (радиус) возвести в квадрат и умножить на число «пи». Для нашего примера сечение будет около 1,76 квадратных миллиметров.
    Далее для расчета понадобится общепринятое значение плотности тока на квадратный миллиметр проводника. Для бытовых понижающих трансформаторов это 2,5 ампера на миллиметр квадратный. Соответственно, по второй обмотке нашего образца сможет «безболезненно» протекать ток силой около 4,3 А.
    Теперь берем вычисленное ранее напряжение вторичной обмотки, и умножаем его на полученный ток. В результате получим примерное значение мощности нашего трансформатора. При 12 В и 4,3 А этот параметр будет в районе 50 Вт.
    Мощность «безымянного» трансформатора можно определить еще несколькими способами, однако, они более сложные. Желающие смогут найти информацию о них в Сети. Мощность узнается по сечению окон трансформатора, с помощью программ расчета, а также по номинальной рабочей температуре.


    Заключение
    Из всего вышесказанного можно сделать вывод, что определение характеристик трансформатора без маркировки является довольно простой задачей. Главное – соблюдать правила безопасности и быть предельно внимательным при работе с высоким напряжением.

    Вам может понравиться:

    • Вязаные коврики крючком: интересные модели, схемы и…
    • Идеи для подушек из старых свитеров… Никогда бы не…
    • Советы, которые будут полезны и начинающим, и…

    Данная статья является дальнейшим развитием идеи бестрансформаторного питания .

    Во всех приведенных ниже схемах нумерация элементов, выполняющих одно и то же назначение, сохранена от схемы к схеме. Дополнительные новые элементы схем имеют сквозную нумерацию. Если нет какого-то очередного номера элемента, это значит, что он был в предыдущей схеме (а на данной этого номера просто нет). 1.Усилитель низкой частоты

    Схема УНЧ (рис.1) известна как трансформаторная. Особенность ее - в отсутствии силового трансформатора. Питание анодов ламп осуществляется от сети 220 В по схеме удвоения напряжения и Ua-к=620 В. Накал ламп - от сети 220 В через токоограничивающий конденсатор С6. В качестве Тр1, Тр2 можно использовать силовые трансформаторы от старых ламповых радиоприемников со средней точкой во вторичной обмотке (как правило, в них устанавливали кенотроны типа 5Ц4С, 5ЦЗС и т.д.). Сетевая обмотка этих трансформаторов используется как высокомный выход при работе в линию на абонентов, накальная обмотка - как низкоомный выход.


    Рис.1

    В любительских условиях в качестве выходного трансформатора может использоваться силовой от ламповых радиоприемников без средней точки на вторичной обмотке (например от "Рекордов"), но для этого нужно сетевую и повышающую обмотки включить последовательно, а точка соединения и будет средней.

    В качестве входного трансформатора, в любительских условиях может использоваться выходной трансформатор от ламповых усилителей старых радиоприемников с двухтактным выходным каскадом (две лампы 6П14П, две 6П6С и т.д.).

    Данный усилитель обеспечивает при Рвх=20...30 Вт на выходе Рвых=120... 130 Вт. Конденсаторы С4, С5 ограничивают анодный ток ламп, пропорционально своей емкости, например если С4=С5=20 мкФ каждый, то анодный ток ламп ограничен на уровне 400 мА.

    Использовать С4, С5 большей емкости нет смысла, т.к. анодный ток двух ламп не превышает 350 мА. К тому же, чем больше емкость этих конденсаторов, тем больше бросок тока при первом включении в сеть 220 В и возможен пробой диодов. В качестве диодов могут быть использованы Д226 или им подобные, включенные попарно параллельно. 2. Широкополосный усилитель мощности KB

    Схемотехника усилителя (рис.2) практически ничем не отличается от УНЧ, только трансформаторы выполнены на ферритовых кольцах. Причем до частот 7 МГц с успехом можно применять кольца 2000НН, но лучше - 400...600НН; при работе до 28 МГц - 50 ВЧ, при этом обеспечивается минимальный завал АЧХ на ВЧ диапазонах. Должна быть хорошая изоляция между первичной и вторичной обмотками. Обмотки содержат по 12...15 витков каждая.


    Рис.2 (нажмите для увеличения)

    Выходной трансформатор - типоразмера К40х25х25 или близкий к нему. Входной трансформатор - К16х8х6 или близкий к нему. Типоразмеры могут быть обеспечены за счет набора из нескольких колец. При Рвх=30 Вт ток анодов ламп составлял 250 мА при Uа-к=620B. 3. Усилитель мощности KB с общим катодом

    Как известно, схема включения ламп с общим катодом требует полного набора питающих напряжений: анодного, экранной сетки, управляющей сетки, накального (рис.3).

    Обычная схема удвоения сети (220В) дает источник для питания анодно-экранных цепей ламп (+620В +310 В). Для питания накалов ламп используется конденсатор С6, который ограничивает ток накалов.


    Рис.3 (нажмите для увеличения)

    Источник отрицательного напряжения собран на Tp1, V9...V12, С20. В качестве Тр1 используется малогабаритный трансформатор, т.к. потребление по управляющим сеткам очень мало.

    Хочу заострить внимание на том, что подобные схемы имеют два "общих провода". Один -для схемы по постоянному току, это минусовая обкладка конденсатора С5, обозначенная 0В. Относительно этой точки нужно производить измерения по постоянному току. Причем при этих измерениях надо соблюдать технику безопасности, т.к. такие цели не имеют гальванической развязки от сети. Например, чтобы измерить анодное и экранное напряжения, нужно "-" вольтметра подключить к точке 0В, а "+" вольтметра - на ножку 3 V5 либо V6. Это и есть напряжение на экранных сетках. Если на ножку 6 V5 либо V6 - это и будет анодное напряжение.

    Чтобы измерить "-" на управляющей сетке, нужно поменять полярность вольтметра, т.е."+" вольтметра подать в точку 0В, а "-" - на ножку 2 V5 либо V6 и резистором R1 выставить ток покоя ламп в режиме ТХ - передача (без сигнала на входе). В режиме приема (RX) на управляющих сетках - максимальный "-" и лампы закрыты, ток через них равен нулю. Режим ламп выставляется резистором R1 в режиме несущей по прибору РА1. Двигая R1 в сторону контакта реле Р2, уменьшают "-" на управляющих сетках до тех пор, пока идет линейный прирост показаний РА1. Как только линейный прирост прекратился, R1 слегка возвращают назад и фиксируют лаком.

    Вторым общим проводом является корпус усилителя - это общий провод для радиочастотного сигнала. И все измерения ВЧ-напряжений; если в этом есть необходимость, производятся относительно корпуса. Большинство элементов усилителя некритичны и могут значительно отличаться по номиналам. Например емкости С1, С2, С7, С8, С19, С1б могут колебаться в пределах 1000 ПФ...10000 пФ. Главное, чтобы они выдерживали напряжения схемы, т.е. С1, С2 - не менее 250 В, С8 - не менее 1000 В (он может быть набран из двух на 500 В), С7 - не менее 500 В, С19 - не менее 250 В, С16 - любой. С 14 - 80...200 пФ.

    Критичен только один элемент - С9. Он должен иметь значительный запас по напряжению - не менее 1000 В, а главное, емкость его не должна быть более 3000 пФ. С9 - это та "изюминка" схемы, которая обеспечивает безопасность при бестрансформаторном питании. В случае обрыва общего заземления ток между корпусом и общим заземлением не достигает величины, поражающей организм человека, т.к. ограничен емкостью С9< 3000 пФ на уровне 250...300 мкА в самом неблагоприятном случае. Еще одна особенность- вместо дросселя в управляющей сетке используется резистор R5. Как показал опыт, использование резистора значительно попытает устойчивость каскада к самовозбуждению.

    Также достаточно удачно решен вопрос использования контуров L7, L8, L9, L10, L11, L12. Они используются реверсивно, т.е. при приеме (RX) являются входными узкополосными с подстройкой входа С18, а при передаче (ТХ) - согласующими низкое выходное сопротивление трансивера (как правило, 50...75 Ом) с высоким входным сопротивлением лампового усилителя по схеме с общим катодом.

    При передаче (ТХ) С 17 подключается параллельно C18, но т.к. емкость С17 мала (2пФ), она почти не влияет на настройку контуров L7, L8, L9, L10, L11, L12, аналогично Ссв подключается параллельно С12 и также не влияет на настройку контура. Ссв выполнен в виде одного-двух витков вокруг монтажного провода, соединяющего С10 с С12. Этот кусочек монтажного провода выполнен из высоковольтного провода, либо из коаксиального кабеля, с которого снята внешняя оплетка, а витки намотаны поверх толстого капронового наполнителя. Такой конденсатор связи выдерживает большие реактивные напряжения и токи и может применяться в более мощных усилителях. После малой емкости (Ссв) - и малые напряжения, поэтому Р1 не очень критично к зазору между контактами.

    Данная схема коммутации антенны с RX на ТХ с реверсивным использованием элементов П-контура и входного "узкополосного" контура позволяет производить "холодную" настройку на корреспондента - по максимальной громкости, ручками С12, С13, С18, без излучения "несущей" в эфир, что значительно сокращает взаимные помехи и настройку на частоте ДХ-ов. Вместо L7, L8, L9, L10, L11, L12 можно обойтись всего двумя катушками: одна настраивается на ВЧ-диапазонах - на 28 МГц минимум С18, другая - на 7,0 МГц с минимумом С18, но максимальная емкость С18 должна быть до 500 пФ (чтобы перекрывать оставшиеся диапазоны).

    Отводы у катушек L7, L8, L9, L10, L11, L12 делают приблизительно от 1/З витков (от заземленного конца), но лучше подобрать на каждом диапазоне по максимальному ВЧ напряжению на управляющих сетках ламп.

    Катушки выполняются на любых каркасах с сердечниками (и даже без них). Главное - их нужно настроить по максимальной громкости принимаемых станции (при отсутствии приборов), возможно, придется немного изменить емкости, подключенные параллельно им.

    Лампы V5, V6 включены на сложение мощностей в диапазоне 28 МГц; L5 и L6 настраиваются на максимум выходной мощности на 28 МГц сдвигая и раздвигая витки. При этом нужно помнить, что L5, L6, L4 находятся под анодным напряжением и нужно соблюдать все меры предосторожности.

    L4 для снижения габаритов П-контура и удобства механического крепления выполнена на тороидальном кольце из текстолита, гетинакса, фторопласта и т.д., крепится прямо на галете. Отводы на L4 подбираются экспериментально, в зависимости от входного сопротивления антенны.

    L5, L6 - бескаркасные, они намотаны на оправе диаметром 15 мм и содержат б витков провода ПЭВ-1 1,5мм, длина намотки - 25 мм.

    L4 - 60 витков, намотка - виток к витку, отводы - ориентировочно от 4, 18, 32 витков, первые 4 витка - проводом 1 мм, остальные-0,6мм.

    Дроссель L3 намотан на любом изоляционном материале и содержит приблизительно 160 витков провода 0,25...0,27 мм, часть витков намотана виток к витку, остальные-внавал.Намотка виток к витку соединена cL4 ("горячий" конец L3).

    Катушки L7, L8, L9, L10, L11, L12 - на каркасе не менее 6 мм с сердечником СЦР-1.
    L7 - 10 витков ПЭЛ 0,51, отвод от 3-го снизу;
    L8 - 12 витков ПЭЛ 0,51, отвод от 4-го снизу;
    L9 - 16 витков ПЭЛ 0,25, отвод от 5-го снизу;
    L10 - 25 витков ПЭЛ 0,25, отвод от 8-го снизу;
    L11 - 35 витков ПЭЛ 0.25, отвод от 10-го снизу;
    L12 - 45 витков ПЭЛ 0,25, отвод от 12-го снизу;

    С21 -10пФ; С22-15пФ; С23-- 68 пФ; С24 - 120 пФ; С25 - 200 пФ; С26-430пФ.

    P1, P2 могут соединяться как по схеме рис.З, так и параллельно, может быть применено одно реле с несколькими группами контактов, например РЭС-9, РЭС-22 и т.д. Тип реле также зависит от Uупр. приходящего с трансивера. 4. Гибридный усилитель мощности

    Гибридные усилители известны многим радиолюбителям. На рис.4. представлены некоторые подробности состыковки данных усилителей с бестрансформагорным источником питания.

    На транзисторе VI 4 и резисторе R7 собран регулятор напряжения для экранных сеток ламп. Резисторы R4 и R6 являются токоограничивающими (своего рода защита) при крайних положениях R7, а также и в аварийных ситуациях. R5 создает ток утечки с перехода база-эмиттер для нормальной работы регулятора напряжения. Резистором R1 выставляется отрицательное напряжение на управляющих сетках ламп, при приеме (RX) лампы заперты максимальным напряжением (отрицательным). R2-защита от "перекачки" усилителя и создает частичное автоматическое смещение на управляющих сетках ламп.

    R8, R9, R10, R11 - нагрузка для трансивера. Эти же резисторы определяют входное сопротивление усилителя.

    Схема рис.4 имеют общий провод по постоянному току, изолированный от корпуса. Им является минусовая обкладка конденсатора С5 (обозначена точкой 0В). Относительно этой точки нужно производить все замеры по постоянному току в схеме.


    Рис.4 (нажмите для увеличения)

    Способы и методика настройки сводятся к правильному выбору начального тока через V 13, который должен быть не меньше начального тока (в начале прямолинейного участка характеристики V13). Такой же ток через лампы должен быть выставлен резисторами R1, R7. Хорошие результаты получаются при использовании ламп 6П45С.

    С14 должен быть высоковольтным, как и С9.

    Хочу предостеречь радиолюбителей от ошибки, которую многие совершают при повторении подобных схем. Многие, контролируя анодный ток ламп, пытаются получить максимально возможный ток. Это неправильно, потому что подобные схемы способны обеспечить большие анодные токи, но выходная мощность при этом им (токам) не соответствует. Так, мне через одну ГУ-50 (по данной схеме) удавалось получить ток до 450 мА (Uак=620 В), но выходной мощности в 200 Вт не было, что значительно сокращало срок службы (быстро терялась эмиссия катода), вызывало TVI, т.е. схема работала как усилитель постоянного тока.

    Учитывая сказанное, нужно "выжимать" не максимально возможные анодные токи (они только косвенно связаны с выходной мощностью), а максимальное ВЧ -напряжение на эквиваленте, либо на антенне по индикатору выхода. При приросте ВЧ-напряжения также нужно использовать только прямолинейный участок и не заводить в зону "насыщения". Лампы включены на сложение мощностей, параметры П-контура - типовые (изложены в предыдущем разделе). Можно вместо КП904 использовать биполярный КТ907. Эмиттер включается вместо истока, коллектор - вместо стока. Необходимое смещение на базу подается через мощный резистор 500м сдвижка потенциометра 3,3 к, включенного между"-" выпрямителя и нижним выводом R7, который соответственно отключается от "-" выпрямителя. Этим потенциометром устанавливают начальный ток каскада. Между движком потенциометра и "-" выпрямителя включают блокировочный конденсатор на небольшое (<100В) напряжение, 5. Усилитель на ГУ74Б

    На схеме рис.5 представлен усилитель мощности на лампе ГУ74Б, которой на аноде нужно 1200В. Это напряжение получается за счет сложения напряжений двух источников. Первый собран по схеме удвоения напряжения без трансформатора от сети 220 В и выдает два напряжения (относительно точки 0В): +310 В и +620 В. Этих напряжений вполне достаточно для питания экранных сеток большинства ламп с высоким анодным напряжением.


    Рис.5 (нажмите для увеличения)

    Второй источник (его можно условно назвать"вольтдобавкой") собран на трансформаторе (ТС-270). Для того чтобы, получить суммарное напряжение 1200 В, на вторичной обмотке трансформатора должно быть приблизительно 400 В переменного напряжения. После выпрямления диодами V10...V17 и фильтрации конденсаторами С27, С28 постоянное напряжение получается где-то на 1/3 больше - в сумме с первым (+620 В) достигается напряжение, необходимое для работы лампы. Так как эти источники работают на сложение напряжений и мощностей, то и мощность потребления распределяется приблизительно пропорционально их напряжениям,а это значит, что можно смело использовать трансформатор с габаритной мощностью меньше как минимум вдвое, чем при обычной трансформаторной схеме. Источник отрицательного напряжения собран на диоде V9 и конденсаторе С20. Так как схема однополупериодная, емкость С20 должна быть достаточно большой - 200 мкФ.

    Вместо дросселя в управляющей сетке применен резистор R5, что делает каскад более устойчивым к самовозбуждению.

    Применено последовательное питание лампы через элементы П-контура. Это имеет свои недостатки - элементы П-контура находятся под высоким напряжением, и свои достоинства - при последовательном питании КПД на ВЧ диапазонах несколько выше, а требования к дросселю L3 на электрическую прочность несколько ниже, т.к. он стоит после элементов П-контура (L5, L4).

    П-контур может быть выполнен и по типовой схеме параллельного питания.

    Несколько повышенные требования к конденсаторам С12, С13 - они должны иметь достаточный зазор между пластинами. С12 при заведенных роторных пластинах должен иметь зазор не менее 1,5мм.С10, С11 должны выдерживать большие реактивные мощности при напряжении не менее 2,5 кВ. Конденсатор С9 обеспечивает технику безопасности, и его емкость не должна быть более 3000 пФ. С4, С5, С27, С28 - 180 мкФ х 350 В каждый.

    Ввод усилителя мощности в работу производится в следующей последовательности.

    1. Включается S1 (все остальные должны быть выключены). Начинает работать мотор обдува лампы, вся схема включается на пониженное напряжение через конденсаторы С, С". Они предотвращают бросок тока на заряд конденсаторов С4, С5, С27, С28.

    2. Через несколько секунд включается S1 -он подает в схему полное напряжение, при этом появляется максимальное отрицательное напряжение на управляющей сетке лампы и полное накальное напряжение - идет прогрев лампы.

    3. Через несколько минут, когда накал прогрел лампу, включается тумблер ВК2. Если в схеме нет аварийных режимов, включается ВК1. При работе в эфире коммутацию с приема на передачу осуществляет реле P1.

    Отключение усилителя осуществляется в обратном порядке.

    Установка режима осуществляется резистором R1. Линейный прирост мощности контролируют по индикатору выхода РА1. Если прирост мощности прекратился или идет слишком медленно (зона насыщения), нужно R1 немножко вернуть назад и зафиксировать.

    S2, S1, S1", ВК1, ВК2 должны иметь рычажки переключения из изоляционного материала. Кроме того, желательно их установить на изоляционной декоративной подкладке(изолировать от корпуса) из толстого оргстекла, текстолита и т.д.

    L4 с целью уменьшения габаритов и удобства крепления крепится прямо на S2. Желательно выполнить его на тороидальном кольце из фторопласта, гетинакса и т.д.

    Контура L7, L8, L9, L10, L11, L12 - такие же как в разделе 3.

    Если ваш трансивер не "раскачивает" данный усилитель, не огорчайтесь -в него можно установить еще один каскад усиления по схеме рис.6. Это лампы типа 6П15П,6П18П,6П9 (или любая другая лампа-триод достаточной мощности), включенные триодом.


    Рис.6

    Накал берется с ТС-270 (-6,3 В). Общий провод подключается в точку 0В -это "-" конденсатора С5. Анодное напряжение берется с "+" С4 (+620 В). Отрицательное напряжение берется с R1 (рис.5а) параллельным подключением. Вход-выход каскада подключается в точку разрыва (на рис.5 помечено "х") конденсатора С14. Данные контуров - такие же как в разделе 3.

    L1,L2 мотаются на феррите более толстым проводом - 0,37...0,4 мм, 25...30 витков.

    Используя данную схемотехнику, можно получить усилители малых габаритов (настольные вместе с источником) с хорошей энергетикой.

    Литература

    1. В.Кулагин. Усилитель мощности КВ "Ретро". РЛ, 8/95, с.26.

    Читайте и пишите полезные

    Обзор схем бестрансформаторных источников питания (10+)

    Бестрансформаторные источники питания - Понижающие

    При проектировании малогабаритных устройств применение трансформаторов иногда является нежелательным. Кроме того при росте мировых цен на сырье (медь и железо) стоимость трансформаторов постоянно растет, в то время как стоимость других радиоэлектронных компонентов в целом снижается. В этой ситуации становится актуальным применение импульсных источников питания, в которых трансформаторы имеют небольшой размер и вес, а значит, небольшую стоимость, или проектирование бестрансформаторных источников питания и преобразователей напряжения. Мы планируем цикл статей о проектировании импульсных устройств, подпишитесь на новости , если эта тема Вам интересна. Сейчас остановимся на бестрансформаторных решениях.

    У всех таких схем имеется общий недостаток - отсутствие гальванической развязки с высоковольтными шинами питания. Так что пользователи проектируемых устройств должны быть конструктивно защищены от любого контакта с элементами схемы, должна быть предусмотрена защита от влаги, попадания посторонних предметов. К схемам с бестрансформаторным питанием предъявляются такие же требования по безопасности, как и к высоковольтным схемам. Потенциал некоторых цепей относительно земли у них может быть равен потенциалу сетевого напряжения, даже если внутри самой схемы напряжение не превышает десятков вольт.

    Бестрансформаторное питание обычно применяется в схемах автоматики и схемах формирования импульсов для преобразователей напряжения. В этих случаях гальваническую развязку обеспечить все равно невозможно, так как управляющие импульсы должны подаваться непосредственно на силовые элементы, находящиеся под сетевым напряжением.

    К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

    Если что-то непонятно, обязательно спросите!
    Задать вопрос. Обсуждение статьи. сообщений.

    Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
    Схема импульсного источника питания ярких светодиодов....


    Принцип работы, самостоятельное изготовление и наладка импульсного силового прео...


    Ремонт импульсного источника питания. Отремонтировать блок питания или преобразо...


    Как работает повышающий стабилизированный преобразователь напряжения. Где он при...


    Является простым повышающим преобразователем, построенным на м/с NE555, которая выполняет здесь функцию генератора импульсов. Выходное напряжение может варьироваться в пределах 110-220В (регулируется потенциометром).

    Область применения

    Преобразователь идеально подходит для питания ламп часов Nixie или маломощных или усилителей к наушникам, заменив собой классический источник питания высокого напряжения на трансформаторах. Целью создания этого устройства был проект часов на вакуумных индикаторах в котором схема работает как источник питания высокого напряжения. Преобразователь при питании 9 В и потребляет ток порядка 120 мА (при 10 мА нагрузке).

    Принцип работы схемы

    Как видите, это стандартный преобразователь напряжения повышающего типа. Частота на выходе микросхемы U1 (NE555) определяется номиналами элементов R1 (56k), R3 (10k), С2 (2,2 nF), и составляет около 45 кГц. Выход с генератора непосредственно управляет mosfet транзистором Т1, который переключает ток, протекающий через катушку L1. Во время нормальной работы катушка L1 периодически накапливает и отдает энергию, увеличивая выходное напряжение.

    Схема инвертора на 555

    Когда транзистор T1 (IRF740) открывается и подаёт на катушку L1 (100 мкГн) питание (ток течет от источника питания к массе — это первый этап. На втором этапе, когда транзистор будет отключен — ток через катушку в соответствии с законом коммутации вызывает увеличение напряжения на аноде диода D1 (BA159) до тех пор, пока он не будет поляризован в направлении проводимости. Происходит разряд катушки в конденсатор C4 (2,2 мкф). Таким образом, напряжение на C4 растет до тех пор, пока напряжение на выходе делителя R5 (220k), P1 (1к) и R6 470R не вырастет до значения около 0,7 В. Это приведет к включению транзистора T2 (BC547) и отключению генератора 555. Когда напряжение на выходе упадет — транзистор Т2 будет закрыт и генератор снова включается. Так выходное напряжение преобразователя регулируется по величине.


    Готовая плата для пайки

    Конденсатор C1 (470uF) фильтрует напряжение питания схемы. Регулировка выходного напряжения выполняется с помощью потенциометра P1.

    Сборка бестрансформаторного преобразователя


    Собранный преобразователь 9-150 вольт

    Преобразователь можно спаять на печатной плате. Рисунок PDF платы, в том числе в зеркальном отображении и расположение деталей — . Монтаж прост и пайка элементов произвольная. Под микросхему U1 имеет смысл использовать панельку. Устройство следует питать напряжением 9В.