Что начальная фаза. Начальная фаза колебаний

Волны имеют вид

Уравнения плоской монохроматической электромагнитной

Мгновенные значения в любой точке связаны соотношением

Колеблются в одинаковых фазах, а их

Плоскости, перпендикулярной вектору скорости распростра-

Магнитного полей взаимно перпендикулярны и лежат в

Электромагнитные волны являются поперечными,

Средах определяется формулой

Фазовая скорость электромагнитных волн в различных

Волну.

Пространстве процесс и представляет собой электромагнитную

Точке к другой. Этот периодический во времени и

Распространяющихся в окружающем пространстве от одной

Взаимных превращений электрического и магнитного полей,

Электромагнитное поле, то возникает последовательность

Возбуждать с помощью колеблющихся зарядов переменное

Уравнений Максвелла для электромагнитного поля. Если

Существование электромагнитных волн вытекает из

Электромагнитные волны

Щими, будет слабым. Таким образом, осуществляется, например,

Напряжение, создаваемое на конденсаторе другими составляю-

Превышающее значение данной составляющей, в то время как

Идальных напряжений, нужной составляющей. Настроив

Сложного напряжения, равного сумме нескольких синусо-

Явление резонанса используют для выделения из

Равна величине обратной добротности контура, т. е.

Относительная ширина резонансной кривой

Добротность контура определяет остроту резонансных

Активному сопротивлению контура.

Таким образом, добротность обратно пропорциональна

С рез U

Конденсаторе может превышать приложенное напряжение, т.е.

Резонансные свойства контура характеризует доброт-

Установившийся ток в цепи с конденсатором течь не может.

Iрез LC

Совпадает с собственной частотой контура

Следовательно, резонансная частота для силы тока

Рис. 1.22

R1 < R2 < R3

  . (1.96)

При ω →0, I = 0, так как при постоянном напряжении

ность Q, которая показывает, во сколько раз напряжение на

 (1.97)

При малых затуханиях ω рез ω0 и

Q  1 (1.98)

кривых. На рис. 1.23 изображена одна из резонансных кривых

для силы тока в контуре. Частоты ω1 и ω2 соответствуют току

max I I 2 .

 

контур (посредством изменения R и C ) на требуемую частоту

, можно получить на конденсаторе напряжение в Q раз



настройка радиоприёмника на нужную длину волны.

    1 0 2

m max I

Рис. 1.7

Рис.1.23

 , (1.100)

 - скорость электромагнитных волн в вакууме.

поскольку векторы E

и H

напряжённости электрического и

нения волны, образуя правовинтовую систему (рис.1.24). При

этом векторы E

и Н

0 0   E  Н. (1.101)

cos() m Е  Е t  kx  , (1.102)

cos() m H  H t  kx  , (1.103)

где ω- частота волны, k = ω/υ = 2π/λ – волновое число, α-

Рис.1.24

Электромагнитные волны переносят энергию. Объёмная

Но т.к. витки сдвинуты в пространстве, то наводимая в них ЭДС будет достигать амплитудных и нулевых значений не одновременно.

В начальный момент времени ЭДС витка будет:

В этих выражениях углы и называются фазными , или фазой . Углы и называются начальной фазой . Фазный угол определяет значение ЭДС в любой момент времени, а начальная фаза определяет значение ЭДС в начальный момент времени.

Разность начальных фаз двух синусоидальных величин одинаковой частоты и амплитуды называется углом сдвига фаз

Разделив угол сдвига фаз на угловую частоту, получим время, прошедшее с начала периода:

Графическое изображение синусоидальных величин

U = (U 2 a + (U L - U c) 2)

Таким образом, из-за наличия угла сдвига фаз напряжение U всегда меньше алгебраической суммы U a + U L + U C . Разность U L - U C = U p называется реактивной составляющей напряжения .

Рассмотрим, как изменяются ток и напряжение в последовательной цепи переменного тока.

Полное сопротивление и угол сдвига фаз. Если подставить в формулу (71) значения U a = IR; U L = lL и U C =I/(C), то будем иметь: U = ((IR) 2 + 2), откуда получаем формулу закона Ома для последовательной цепи переменного тока:

I = U / ((R 2 + 2)) = U / Z (72)

где Z = (R 2 + 2) = (R 2 + (X L - X c) 2)

Величину Z называют полным сопротивлением цепи , оно измеряется в омах. Разность L — l/(C) называют реактивным сопротивлением цепи и обозначают буквой X. Следовательно, полное сопротивление цепи

Z = (R 2 + X 2)

Соотношение между активным, реактивным и полным сопротивлениями цепи переменного тока можно также получить по теореме Пифагора из треугольника сопротивлений (рис. 193). Треугольник сопротивлений А’В’С’ можно получить из треугольника напряжений ABC (см. рис. 192,б), если разделить все его стороны на ток I.

Угол сдвига фаз определяется соотношением между отдельными сопротивлениями, включенными в данную цепь. Из треугольника А’В’С (см. рис. 193) имеем:

sin ? = X / Z; cos? = R / Z; tg? = X / R

Например, если активное сопротивление R значительно больше реактивного сопротивления X, угол сравнительно небольшой. Если в цепи имеется большое индуктивное или большое емкостное сопротивление, то угол сдвига фаз возрастает и приближается к 90°. При этом, если индуктивное сопротивление больше емкостного, напряжение и опережает ток i на угол; если же емкостное сопротивление больше индуктивного, то напряжение и отстает от тока i на угол.

Идеальная катушка индуктивности, реальная катушка и конденсатор в цепи переменного тока.

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля .

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р , а изменение энергии в магнитном поле — реактивной мощностью Q .

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Колебательные процессы - важный элемент современной науки и техники, поэтому их изучению всегда уделялось внимание, как одной из “вечных” проблем. Задача любого знания - не простое любопытство, а использование его в повседневной жизни. А для этого существуют и ежедневно появляются новые технические системы и механизмы. Они находятся в движении, проявляют свою сущность, выполняя какую-нибудь работу, либо, будучи неподвижными, сохраняют потенциальную возможность при определенных условиях перейти в состояние движения. А что есть движение? Не углубляясь в дебри, примем простейшее толкование: изменение положения материального тела относительно любой системы координат, которую условно считают неподвижной.

Среди огромного количества возможных вариантов движения особый интерес представляет колебательное, которое отличается тем, что система повторяет изменение своих координат (или физических величин) через определенные промежутки времени - циклы. Такие колебания называются периодическими или циклическими. Среди них выделяют отдельным классом у которых характерные признаки (скорость, ускорение, положение в пространстве и т.д.) изменяются во времени по гармоническому закону, т.е. имеющему синусоидальный вид. Замечательным свойством гармонических колебаний является то, что их комбинация представляет любые другие варианты, в т.ч. и негармонические. Очень важным понятием в физике является “фаза колебаний”, которое означает фиксацию положения колеблющегося тела в некоторый момент времени. Измеряется фаза в угловых единицах - радианах, достаточно условно, просто как удобный прием для объяснения периодических процессов. Другими словами, фаза определяет значение текущего состояния колебательной системы. Иначе и быть не может - ведь фаза колебаний является аргументом функции, которая описывает эти колебания. Истинное значение фазы для характера может означать координаты, скорость и другие физические параметры, изменяющиеся по гармоническому закону, но общим для них является временная зависимость.

Продемонстрировать, колебаний, совсем не сложно - для этого понадобится простейшая механическая система - нить, длиной r, и подвешенная на ней “материальная точка” - грузик. Закрепим нить в центре прямоугольной системы координат и заставим наш “маятник” крутиться. Допустим, что он охотно это делает с угловой скоростью w. Тогда за время t угол поворота груза составит φ = wt. Дополнительно в этом выражении должна быть учтена начальная фаза колебаний в виде угла φ0 - положение системы перед началом движения. Итак, полный угол поворота, фаза, вычисляется из соотношения φ = wt+ φ0. Тогда выражение для гармонической функции, а это проекция координаты груза на ось Х, можно записать:

x = А * cos(wt + φ0), где А - амплитуда колебания, в нашем случае равная r - радиусу нити.

Аналогично такая же проекция на ось Y запишется следующим образом:

у = А * sin(wt + φ0).

Следует понимать, что фаза колебаний означает в данном случае не меру поворота “угол”, а угловую меру времени, которая выражает время в единицах угла. За это время груз совершает поворот на некоторый угол, который можно однозначно определить, исходя из того, что для циклического колебания w = 2 * π /Т, где Т - период колебания. Следовательно, если одному периоду соответствует поворот на 2π радиан, то часть периода, время, можно пропорционально выразить углом как долей от полного поворота 2π.

Колебания не существуют сами по себе - звуки, свет, вибрация всегда являются суперпозицией, наложением, большого количества колебаний от разных источников. Безусловно, на результат наложения двух и более колебаний оказывают влияние их параметры, в т.ч. и фаза колебаний. Формула суммарного колебания, как правило, негармонического, при этом может иметь очень сложный вид, но от этого становится только интереснее. Как сказано выше, любое негармоническое колебание можно представить в виде большого числа гармонических с разной амплитудой, частотой и фазой. В математике такая операция называется “разложение функции в ряд” и широко используется при проведении расчетов, например, прочности конструкций и сооружений. Основой таких расчетов являются исследования гармонических колебаний с учетом всех параметров, в том числе и фазы.

Фаза колебаний (φ) характеризует гармонические колебания.
Выражается фаза в угловых единицах - радианах.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса: φ = ω 0 t .

Фаза колебаний определяет при заданной амплитуде состояние колебательной системы (значение координаты, скорости и ускоренияв) любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний.

График зависимости координаты колеблющейся точки от фазы




Гармонические колебания можно представить как с помощью функции синуса, так и косинуса, т.к.
синус отличается от косинуса сдвигом аргумента на .



Поэтому вместо формулы

х = х m cos ω 0 t


можно для описания гармонических колебаний использовать формулу



Но при этом начальная фаза , т. е. значение фазы в момент времени t = 0, равна не нулю, а .
В разных ситуациях удобно использовать синус или косинус.

Какой формулой пользоваться при расчетах?


1. Если в начале колебаний выводят маятник из положения равновесия, то удобнее пользоваться формулой с применением косинуса.
2. Если координата тела в начальный момент была бы равна нулю, то удобнее пользоваться формулой с применением синуса х = х m sin ω 0 t , т.к. при этом начальная фаза равна нулю.
3. Если в начальный момент времени (при t - 0) фаза колебаний равна φ, то уравнение колебаний можно записать в виде х = х m sin (ω 0 t + φ) .


Сдвиг фаз


Колебания, описываемые формулами через синус и косинус, отличаются друг от друга только фазами.
Разность фаз (или сдвиг фаз) этих колебаний составляет .
Графики зависимости координат от времени для двух гармонических колебаний, сдвинутых по фазе на :
где
график 1 - колебания, совершающиеся по синусоидальному закону,
график 2 - колебания, совершающиеся по закону косинуса

Введем еще одну величину, характеризующую гармонические колебания, - фазу колебаний .

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса: φ = ω 0 t.

Величину φ, стоящую под знаком функции косинуса или синуса, называют фазой колебаний , описываемой этой функцией. Выражается фаза в угловых единицах - радианах.

Фаза определяет не только значение координаты, но и значение других физических величин, например скорости и ускорения, изменяющихся также по гармоническому закону. Поэтому можно сказать, что фаза определяет при заданной амплитуде состояние колебательной системы в любой момент времени . В этом состоит значение понятия фазы.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Так как , то

Отношение указывает, сколько периодов прошло от момента начала колебаний. Любому значению времени t, выраженному в числе периодов Т, соответствует значение фазы φ, выраженное в радианах. Так, по прошествии времени (четверти периода) по прошествии половины периода φ = π, по прошествии целого периода φ = 2π и т. д.

Можно изобразить на графике зависимость координаты колеблющейся точки не от времени, а от фазы. На рисунке 3.7 показана та же косинусоида, что и на рисунке 3.6, но на горизонтальной оси отложены вместо времени различные значения фазы φ.

Представление гармонических колебаний с помощью косинуса и синуса. Вы уже знаете, что при гармонических колебаниях координата тела изменяется со временем по закону косинуса или синуса. После введения понятия фазы остановимся на этом подробнее.

Синус отличается от косинуса сдвигом аргумента на , что соответствует, как видно из уравнения (3.21), промежутку времени, равному четверти периода:

Поэтому вместо формулы х = х m cos ω 0 t можно для описания гармонических колебаний использовать формулу

Но при этом начальная фаза , т. е. значение фазы в момент времени t = 0, равна не нулю, а .

Обычно колебания тела, прикрепленного к пружине, или колебания маятника мы возбуждаем, выводя тело маятника из положения равновесия и затем отпуская его. Смещение от положения равновесия максимально в начальной момент. Поэтому для описания колебаний удобнее пользоваться формулой (3.14) с применением косинуса, чем формулой (3.23) с применением синуса.

Но если бы мы возбудили колебания покоящегося тела кратковременным толчком, то координата тела в начальный момент была бы равна нулю, и изменения координаты со временем было бы удобнее описывать с помощью синуса, т. е. формулой

х = х m sin ω 0 t, (3.24)

так как при этом начальная фаза равна нулю.

Если в начальный момент времени (при t - 0) фаза колебаний равна φ, то уравнение колебаний можно записать в виде

х = х m sin (ω 0 t + φ).

Колебания, описываемые формулами (3.23) и (3.24), отличаются друг от друга только фазами. Разность фаз, или, как часто говорят, сдвиг фазу этих колебаний составляет . На рисунке 3.8 показаны графики зависимости координат от времени для двух гармонических колебаний, сдвинутых по фазе на . График 1 соответствует колебаниям, совершающимся по синусоидальному закону: х = х m sin ω 0 t, а график 2 - колебаниям, совершающимся по закону косинуса:

Для определения разности фаз двух колебаний надо в обоих случаях колеблющуюся величину выразить через одну и ту же тригонометрическую функцию - косинус или синус.

Вопросы к параграфу

1. Какие колебания называют гармоническими?

2. Как связаны ускорение и координата при гармонических колебаниях?

3. Как связаны циклическая частота колебаний и период колебаний?

4. Почему частота колебаний тела, прикрепленного к пружине, зависит от его массы, а частота колебаний математического маятника от массы не зависит?

5. Каковы амплитуды и периоды трех различных гармонических колебаний, графики которых представлены на рисунках 3.8, 3.9?