Генератор свободной энергии: схема практическая, описание. Генератор обратной мощности Схема генератор реактивной мощности 2 квт

Электричество с каждым днем дорожает. И многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем в качестве образцов безтопливные генераторы Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегатов, их схема и как сделать устройство своими руками.

Как сделать бестопливный генератор своими руками

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

Обзор генераторов

При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

Фото — Генератор Капанадзе

Обычные электрогенераторы работают на основе:
1. Двигателя внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, … и
2. С использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.

Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.

Фото — Схема генератора

Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

Видео: самодельный бестопливный генератор:

Скачать видео

Генератор Тесла

Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.

Фото — Бестопливный генератор тесла

Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный. Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.

Фото — Бестопливный генератор Адамса

Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

Как сделать генератор

Существует два варианты выполнения работы:


  1. Сухой способ;

  2. Мокрый или масляный;

Мокрый метод использует аккумулятор, в то время как сухой метод обходится без батареи.

Пошаговая инструкция как собрать электрический бестопливный генератор. Чтобы сделать мокрый генератор бестопливного типа потребуется несколько компонентов:


  • аккумулятор,

  • зарядное устройство подходящего калибра,

  • Трансформатор переменного тока

  • Усилитель мощности.

Подключите трансформатор переменного тока в постоянную сеть к Вашей батарее и усилителю мощности, а затем подсоедините в схему зарядное устройство и датчик для расширения, далее его нужно подключить обратно в батарею. Зачем нужны эти компоненты:


  1. Батарея используется для хранения и накопления энергии;

  2. Трансформатор используется для создания постоянных сигналов ток;

  3. Усилитель поможет увеличить подачу тока, потому что мощность от аккумулятора только 12В или 24В, в зависимости от батареи.

  4. Зарядное устройство необходимо для бесперебойной работы генератора.

Фото — Альтернативный генератор

Сухой генератор работает на конденсаторах. Чтобы собрать такой прибор нужно подготовить:


  • Прототип генератора

  • Трансформатор.

Это производство является наиболее совершенным способом сделать генератор, потому что его работа может длиться годами, как минимум 3 года без подзарядки. Эти два компонента нужно объединить при помощи незатухающих специальных проводников. Мы рекомендуем использовать сварку, чтобы создать наиболее прочное соединение. Для контроля работы используется динатрон, просмотрите видео как правильно соединять проводники.

Устройства на трансформаторе более дорогие, но являются гораздо эффективнее, нежели аккумуляторные. Как прототип Вы можете взять модель free energy, kapanadze, torrent, марка Хмельник. Такие приборы можно будет применять как мотор для электромобиля.

Обзор цен

На отечественному рынке самыми доступными считаются генераторы производства одесских изобретателей, БТГи БТГР. Купить такие бестопливные генераторы можно в специализированном магазине электротехники, интернет-магазинах, от завода-производителя (цена зависит от марки прибора и точки, где осуществляется продажа).

Бестопливные новые генераторы на магните Вега на 10 кВт обойдутся в среднем от 30 000 рублей.

Одесского завода — 20 000 рублей.

Очень популярные Андрус обойдутся хозяевам минимум в 25 000 рублей.

Импортные приборы марки Феррите (аналог устройства Стивена Марка) являются наиболее дорогими на отечественном рынке и стоят от 35 000 рублей, в зависимости от мощности.

Универсальное применение электроэнергии во всех сферах человеческой деятельности сопряжено с поисками бесплатного электричества. Из-за чего новой вехой в развитии электротехники стала попытка создать генератор свободной энергии, который позволили бы значительно удешевить или свести к нулю затраты на получение электроэнергии. Наиболее перспективным источником для реализации этой задачи является свободная энергия.

Что представляет собой свободная энергия?

Термин свободной энергии возник во времена широкомасштабного внедрения и эксплуатации двигателей внутреннего сгорания, когда проблема получения электрического тока напрямую зависела от затрачиваемых для этого угля, древесины или нефтепродуктов. Поэтому под свободной энергией понимается такая сила, для добычи которой нет необходимости сжигать топливо и, соответственно, расходовать какие-либо ресурсы.

Первые попытки научного обоснования возможности получения бесплатной энергии были заложены Гельмгольцем, Гиббсом и Теслой. Первый из них разработал теорию создания системы, в которой вырабатываемая электроэнергия должна быть равной или больше затрачиваемой для начального пуска, то есть получения вечного двигателя. Гиббс высказал возможность получения энергии при протекании химической реакции настолько длительной, чтобы этого хватало для полноценного электроснабжения. Тесла наблюдал энергию во всех природных явлениях и высказал теорию о наличии эфира – субстанции, пронизывающей все вокруг нас.

Сегодня вы можете наблюдать реализацию этих принципов для получения свободной энергетики в . Некоторые из них давно встали на службу человечеству и помогают получать альтернативную энергетику из ветра, солнца, рек, приливов и отливов. Это те же солнечные батареи, гидроэлектростанции, которые помогли обуздать силы природы, находящиеся в свободном доступе. Но наряду с уже обоснованными и воплощенными в жизнь генераторами свободной энергии существуют концепции бестопливных двигателей, которые пытаются обойти закон сохранения энергии.

Проблема сохранения энергии

Главный камень преткновения в получении бесплатного электричества – закон сохранения энергии. Из-за наличия электрического сопротивления в самом генераторе, соединительных проводах и в других элементах электрической сети, согласно законов физики, происходит потеря выходной мощности. Энергия расходуется и для ее пополнения требуется постоянная подпитка извне или система генерации должна создавать такой избыток электрической энергии, чтобы ее хватало и для питания нагрузки, и для поддержания работы генератора. С математической точки зрения генератор свободной энергии должен иметь КПД более 1, что не укладывается в рамки стандартных физических явлений.

Схема и конструкция генератора Теслы

Никола Тесла стал открывателем физических явлений и создал на их основе многие электрические приборы, к примеру, трансформаторы Тесла, которые используются человечеством, и по сей день. За всю историю своей деятельности он запатентовал тысячи изобретений, среди которых есть не один генератор свободной энергии.

Рис. 1: Генератор свободной энергии Тесла

Посмотрите на рисунок 1, здесь приведен принцип получения электроэнергии при помощи генератора свободной энергии, собранного из катушек Тесла. Это устройство предполагает получение энергии из эфира, для чего катушки, входящие в его состав настраиваются на резонансную частоту. Для получения энергии из окружающего пространства в данной системе необходимо соблюдать следующие геометрические соотношения:

  • диаметр намотки;
  • сечения провода для каждой из обмоток;
  • расстояние между катушками.

Сегодня известны различные варианты применения катушек Тесла в конструкции других генераторов свободной энергии. Правда, каких-либо значимых результатов их применения добиться, еще не удалось. Хотя некоторые изобретатели утверждают обратное, и держат результат своих разработок в строжайшей тайне, демонстрируя лишь конечный эффект работы генератора. Помимо этой модели известны и другие изобретения Николы Теслы, которые являются генераторами свободной энергии.

Генератор свободной энергии на магнитах

Эффект взаимодействия магнитного поля и катушки широко применяется в . А в генераторе свободной энергии этот принцип применяется не для вращения намагниченного вала за счет подачи электрических импульсов на обмотки, а для подачи магнитного поля в электрическую катушку.

Толчком к развитию данного направления стал эффект, полученный при подаче напряжения на электромагнит (катушку намотанную на магнитопровод). При этом находящийся поблизости постоянный магнит притягивается к концам магнитопровода и остается притянутым даже после отключения питания от катушки. Постоянный магнит создает в сердечнике постоянный поток магнитного поля, которое будет удерживать конструкцию до тех пор, пока ее не оторвут физическим воздействием. Этот эффект был применен в создании схемы генератора свободной энергии на постоянных магнитах.


Рис. 2. Принцип действия генератора на магнитах

Посмотрите на рисунок 2, для создания такого генератора свободной энергии и питания от него нагрузки необходимо сформировать систему электромагнитного взаимодействия, которая состоит из:

  • пусковой катушки (I);
  • запирающей катушки (IV);
  • питающей катушки (II);
  • поддерживающей катушки (III).

Также в схему входит управляющий транзистор VT, конденсатор C, диоды VD, ограничительный резистор R и нагрузка Z­ H .

Данный генератор свободной энергии включается посредством нажатия кнопки «Пуск», после чего управляющий импульс подается через VD6 и R6 на базу транзистора VT1. При поступлении управляющего импульса транзистор открывается и замыкает цепь протекания тока через пусковые катушки I. После чего электрический ток протечет по катушкам I и возбудит магнитопровод, который притянет постоянный магнит. По замкнутому контуру магнитосердечника и постоянного магнита будут протекать силовые линии магнитного поля.

От протекающего магнитного потока в катушках II, III, IV наводится ЭДС. Электрический потенциал от IV катушки подается на базу транзистора VT1, создавая управленческий сигнал. ЭДС в катушке III предназначена для поддержания магнитного потока в магнитопроводах. ЭДС в катушке II обеспечивает электроснабжение нагрузки.

Камнем преткновения в практической реализации такого генератора свободной энергии является создание переменного магнитного потока. Для этого в схеме рекомендуется установить два контура с постоянными магнитами, в которых силовые линии имеют встречное направление.

Кроме вышеприведенного генератора свободной энергии на магнитах сегодня существует ряд схожих устройств конструкции Серла, Адамса и других разработчиков, в основе генерации которых лежит использование постоянного магнитного поля.

Последователи Николы Теслы и их генераторы

Посеянные Теслой семена невероятных изобретений породили в умах соискателей неутолимую жажду воплотить в реальность фантастические идеи создания вечного двигателя и отправить механические генераторы на пыльную полку истории. Наиболее известные изобретатели использовали принципы изложенные Николой Тесла в своих устройствах. Рассмотрим наиболее популярные из них.

Лестер Хендершот

Хендершот развивал теорию о возможности использования магнитного поля Земли для генерации электроэнергии. Первые модели Лестер представил еще в 1930-х годах, но они так и не были востребованы его современниками. Конструктивно генератор Хендершота состоит из двух катушек со встречной намоткой, двух трансформаторов, конденсаторов и подвижного соленоида.


Рис. 3: общий вид генератора Хендершота

Работа такого генератора свободной энергии возможна только при его строгой ориентации с севера на юг, поэтому для настройки работы обязательно используется компас. Намотка катушек выполняется на деревянных основаниях с разнонаправленной намоткой, чтобы снизить эффект взаимной индукции (при наведении в них ЭДС, в обратную сторону ЭДС наводится не будет). Помимо этого катушки должны настраиваться резонансным контуром.

Джон Бедини

Свой генератор свободной энергии Бедини представил в 1984 году, особенностью запатентованного устройства был энерджайзер – устройство с постоянным вращающимся моментом, которое не теряет оборотов. Такой эффект был достигнут за счет установки на диск нескольких постоянных магнитов, которые при взаимодействии с электромагнитной катушкой создают в ней импульсы и отталкиваются от ферромагнитного основания. Благодаря чему генератор свободной энергии получал эффект самозапитки.

Более поздние генераторы Бедини стали известны за счет одного школьного эксперимента. Модель оказалась значительно проще и не представляла собой чего-то грандиозного, но она смогла выполнять функции генератора свободного электричества порядка 9 дней без помощи извне.


Рис. 4: принципиальная схема генератора Бедини

Посмотрите на рисунок 4, здесь приведена принципиальная схема генератора свободной энергии того самого школьного проекта. В ней используются следующие элементы:

  • вращающийся диск с несколькими постоянными магнитами (энерджайзер);
  • катушка с ферромагнитным основанием и двумя обмотками;
  • аккумулятор (в данном примере он был заменен на батарейку 9В);
  • блок управления из транзистора (Т), резистора (Р) и диода (Д);
  • токосъем организован с дополнительной катушки, питающей светодиод, но можно производить питание и от цепи аккумулятора.

С началом вращения постоянные магниты создают магнитное возбуждение в сердечнике катушки, которое наводит ЭДС в обмотках выходных катушек. За счет направления витков в пусковой обмотке ток начинает протекать, как показано на рисунке ниже через пусковую обмотку, резистор и диод.


Рис. 5: начало работы генератора Бедини

Когда магнит находится непосредственно над соленоидом, сердечник насыщается и запасенной энергии становится достаточно для открытия транзистора Т. При открытии транзистора, ток начинает протекать и в рабочей обмотке, осуществляющей подзаряд аккумулятора.


Рисунок 6: запуск обмотки подзаряда

Энергии на этом этапе становится достаточно для намагничивания ферромагнитного сердечника от рабочей обмотки, и он получает одноименный полюс с находящимся над ним магнитом. Благодаря магнитному полюсу в сердечнике, магнит на вращающемся колесе отталкивается от этого полюса и ускоряет дальнейшее движение энерджайзера. С ускорением движения импульсы в обмотках возникают все чаще, и светодиод с мигающего режима переходит в режим постоянного свечения.

Увы, такой генератор свободной энергии не является вечным двигателем, на практике он позволил системе работать в десятки раз дольше, чем она смогла бы функционировать на одной батарейке, но со временем все равно останавливается.

Тариель Капанадзе

Капанадзе разрабатывал модель своего генератора свободной энергии в 80 – 90-х годах прошлого века. Механическое устройство основывалось на работе усовершенствованной катушки Тесла, как утверждал сам автор, компактный генератор мог питать потребители мощностью в 5 кВт. В 2000-х генератор Капанадзе промышленных масштабов на 100 кВт попытались построить в Турции, по техническим характеристикам ему для пуска и работы требовалось всего 2 кВт.


Рис. 7: принципиальная схема генератора Капанадзе

На рисунке выше приведена принципиальная схема генератора свободной энергии, но основные параметры схемы остаются коммерческой тайной.

Практические схемы генераторов свободной энергии

Несмотря на большое количество существующих схем генераторов свободной энергии совсем немногие из них могут похвастаться реальными результатами, которые можно было бы проверить и повторить в домашних условиях.


Рис. 8: рабочая схема генератора Тесла

На рисунке 8 выше приведена схема генератора свободной энергии, которую вы можете повторить в домашних условиях. Этот принцип был изложен Николой Тесла, для его работы используется металлическая пластина, изолированная от земли и расположенная на какой-либо возвышенности. Пластина является приемником электромагнитных колебаний в атмосфере, сюда входит достаточно широкий спектр излучений (солнечных, радиомагнитных волн, статического электричества от движения воздушных масс и т.д.)

Приемник подключается к одной из обкладок конденсатора, а вторая обкладка заземляется, что и создает требуемую разность потенциалов. Единственным камнем преткновения к его промышленной реализации является необходимость изолировать на возвышенности пластину большой площади для питания хотя бы частного дома.

Современный взгляд и новые разработки

Несмотря на повсеместную заинтересованность созданием генератора свободной энергии, вытеснить с рынка классический способ получения электроэнергии они еще не могут. Разработчикам прошлого, выдвигавшим смелые теории по поводу значительного удешевления электроэнергии, не хватало технического совершенства оборудования или параметры элементов не могли обеспечить надлежащего эффекта. А благодаря научно-техническому прогрессу человечество получает все новые и новые изобретения, которые делают уже осязаемым воплощение генератора свободной энергии. Следует отметить, что сегодня уже получены и активно эксплуатируются генераторы свободной энергии, работающие на силе солнце и ветра.

Но, в то же время, в интернете вы можете встретить предложения о приобретении таких устройств, хотя в большинстве своем это пустышки, созданные с целью обмануть неосведомленного человека. А небольшой процент реально работающих генераторов свободной энергии, будь то на резонансных трансформаторах, катушках или постоянных магнитах, может справляться лишь с питанием маломощных потребителей, обеспечить электроэнергией, к примеру, частный дом или освещение во дворе они не могут. Генераторы свободной энергии – перспективное направление, но их практическая реализация все еще не воплощена в жизнь.

Транскрипт

1 Инвертор реактивной мощности Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1-5 квт. Устройство может использоваться с любыми счетчиками, в том числе с электронными и электронно-механическими, даже имеющими в качестве датчика тока шунт или воздушный трансформатор. Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и от него питается нагрузка. Вся электропроводка остается нетронутой. Заземление не нужно. Счетчик при этом учитывает примерно четверть потребленной электроэнергии. Теоретические основы При питании активной нагрузки фазы напряжения и тока совпадают. Функция мощности, представляющая собой произведение мгновенных значений напряжения и тока, имеет вид синусоиды, расположенной только в области положительных значений. Счетчик электрической энергии вычисляет интеграл от функции мощности и регистрирует его на своем индикаторе. Если к электрической сети вместо нагрузки подключить емкость, то ток по фазе будет опережать напряжение на 90 градусов. Это приведет к тому, что функция мощности будет расположена симметрично относительно положительных и отрицательных значений. Следовательно, интеграл от неё будет иметь нулевое значение, и счетчик ничего считать не будет. Принцип работы инвертора состоит в том, что конденсатор заряжают от сети в течение первого полупериода сетевого напряжения, а в течение второго - разряжают через нагрузку потребителя. Пока нагрузка питается от первого конденсатора, второй также заряжают от сети без подключения нагрузки. После этого цикл повторяется. Таким образом, нагрузка получает питание, по форме в виде пилообразных импульсов, а ток, потребляемый из сети- почти синусоидальный, только его аппроксимирующая функция опережает по фазе напряжение. Следовательно, счетчик учитывает не всю потребленную электроэнергию. Достичь смещения фаз до 90 градусов невозможно, так как фактически заряд каждого конденсатора завершается за четверть периода сетевого напряжения, но аппроксимирующая функция тока через счетчик при правильно подобранных параметрах емкости и нагрузки может опережать напряжение до 70 градусов, что позволяет счетчику учитывать всего четверть от фактически потребленной электроэнергии. Для питания нагрузки, чувствительной к форме напряжения, на выходе устройства можно установить фильтр. В этом случае питание нагрузки будет осуществляться почти правильной синусоидой. Принципиальная схема устройства Принципиальная схема приведена на рис.1. Основными элементами являются инверторный тиристорный мост VD7 VD10 с конденсаторами C1, С2. Тиристоры VD7 и VD8, открываясь поочередно, позволяют конденсаторам C1 и С2 заряжаться от сети в соответствующие полупериоды сетевого напряжения. Тиристоры VD9 и VD10 предназначены для разряда конденсаторов через нагрузку. Импульсы управления тиристорами формируются на вторичных обмотках трансформаторов Т2 и Т3 при открывании транзисторных ключей VT1 и VT2. Сигнал управления транзистором VT1, соответствующий положительной полуволне сетевого напряжения, выделяется параметрическим стабилизатором VD1, R1 и через гальваническую развязку на оптроне ОС1 подается на базу транзистора. Транзистор открыт в течение всего времени положительной полуволны. В момент его открывания переходный процесс тока в первичной обмотке трансформатора Т2 приводит к появлению импульсов во вторичных обмотках. Эти импульсы открывают тиристоры VD7 и VD10. Тиристоры остаются в открытом состоянии, пока токи через них не достигнут нулевых значений. Это приводит к заряду конденсатора С1 и к разряду С2. При появлении отрицательной полуволны сетевого напряжения транзистор VT1 закрывается, а VT2 открывается сигналом, выделяемом элементами VD2, R5 и ОС2. Работа каскада на транзисторе VT2 в отрицательный полупериод аналогична, и приводит к открыванию VD8, VD9, что приводит к заряду конденсатора С2 и к разряду С1. Блок питания транзисторных ключей и формирователей импульсов построен по простейшей схеме и состоит из трансформатора Т1, выпрямительного моста Br1 и фильтра С3.

2 Рис.1. Инвертор реактивной мощности. Схема электрическая принципиальная

3 Детали и конструкция Тиристоры VD7-VD10 должны быть рассчитаны на импульсный ток в открытом состоянии не менее 30 А и постоянное обратное напряжение не менее 310 В. Кроме указанных на схеме, допускается применение тиристоров КУ202К- КУ202М. Каждый тиристор должен быть установлен на радиаторе площадью не менее указанной в нижеследующей таблице. Транзисторы VT1, VT2 должны быть рассчитаны на импульсный ток коллектора не менее 1 А и напряжение коллектор-эмиттер не менее 40 В. Возможно применение транзисторов КТ815, КТ817, КТ819, КТ826, КТ827 с любыми буквенными индексами. В качестве оптронов ОС1, ОС2 можно использовать оптроны АОТ110 с любыми буквенными индексами или другие транзисторные оптроны, рассчитанные на номинальный выходной ток не менее 10 ма и напряжение не менее 30 В. Диоды VD-VD6 типа КД105, КД102, КД106. Br1- любые низковольтные выпрямительные диоды или диодная сборка на ток не менее 200 ма. Резисторы: R1, R5 типа МЛТ-2, остальные резисторы типа МЛТ Накопительные конденсаторы С1 и С2 должны быть рассчитаны на напряжение не менее 400В. Они могут быть электролитическими, например К50-7. Их емкость выбирается в зависимости от мощности нагрузки, подключаемой к выходу устройства и должна быть не менее указанной в таблице. Мощность нагрузки, квт Площадь радиатора тиристора, кв.см. Емкость С1, С2, мкф Допускается применение батарей из нескольких конденсаторов, включенных параллельно. При малых нагрузках не рекомендуется завышать емкость конденсаторов, так как возрастают потери в схеме и снижается эффективность устройства. Конденсатор С3 любой электролитический емкостью мкф. Трансформатор T1 любой мощностью около Вт. Напряжение вторичной обмотки должно быть 12 В. Трансформаторы Т2 и Т2 намотаны на кольцевом ферритовом сердечнике внешним диаметром не менее 10 мм. Все обмотки одинаковые и содержат по витков провода диаметром мм. Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров. Наладка При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Применение плавких предохранителей обязательно! Накопительные конденсаторы работает в тяжелом режиме, поэтому их нужно разместить в прочном металлическом корпусе. Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 0.2 А при напряжении на выходе 16 В. Настройку схемы управления тиристорами рекомендуется выполнять при отключенной нагрузке и отсоединенных накопительных конденсаторах С1, С2. С помощью осциллографа проверяют наличие прямоугольных импульсов на стабилитронах VD1, VD2. Амплитуда этих импульсов должна быть около 5 В, частота 50 Гц, скважность 1/1. Если скважность существенно отличается, то подбирают сопротивления резисторов R1, R5. После этого подключают осциллограф поочередно к база-эмиттерным переходам транзисторов VT1, VT2. Если оптронные узлы работают нормально, то на базах транзисторов будут прямоугольные импульсы амплитудой около 1В и частотой 50 Гц. При отсутствии этих импульсов подбирают резисторы R2, R6.

4 В заключении осциллограф подключают поочередно к управляющим электродам тиристоров VD7-VD10 и измеряют сигналы относительно соответствующих катодов. Должны наблюдаться короткие импульсы амплитудой около 1 В, частотой 50 Гц. Если импульсы отсутствуют или их амплитуда ниже 0.7 В, увеличивают сопротивления R17, R18. На этом настройку схемы управления устройства можно считать завершенной. При подключении нагрузки на выходе устройства будет напряжение, равное нулю. После подключения накопительных конденсаторов напряжение на нагрузке появится и будет иметь вид пилообразных импульсов, приведенных на рис.2. Амплитуда этих импульсов около 310 В, частота 50 Гц. Рис.2 Если нагрузка допускает произвольную форму питающего напряжения (нагревательные элементы, котлы, печи, освещение лампами накаливания и т.п), тогда на этом можно закончить. Если нагрузка требует синусоидального напряжения, перед нагрузкой следует включить фильтр. Как правило, достаточно простейшего Г-образного LC-фильтра (рис.3). При индуктивности дросселя L около 20 мгн и емкости конденсатора С 100 мкф (только неполярный!), на нагрузке мощностью 2 квт получается синусоида с незначительными искажениями (рис.4). Такие искажения допускают практически все потребители, даже точная электронная аппаратура. Рис.3. Фильтр. Рис. 4

5 После испытания устройства под нагрузкой полезно убедиться, что ток потребления из сети опережает по фазе напряжение. Для этого потребуется двулучевой осциллограф. Последовательно с устройством следует включить малое мощное сопротивление (например, кусок спирали от электроплитки), и параллельно ему подключить один канал осциллографа для измерения тока. Второй канал осциллографа включают параллельно входу устройства, для измерения напряжения. Осциллограммы тока и напряжения должны быть смешены относительно друг друга по фазе на величину, как можно ближе к 90 градусов (рис.5). Малое фазосмещение свидетельствует о потере емкости накопительных конденсаторов С1 и С2. Полное отсутствие- о пробое силовых тиристоров или неправильной работе схемы управления. Рис.5. Если при наладке устройства возникнут сложности не спешите делать вывод о некорректности схемы. Схема проверена. Сформулируйте суть проблемы и обратитесь к разработчикам по адресу Мы обязательно разберёмся и поможем Вам. Эти материалы уникальны и являются собственностью авторов проекта Их распространение без согласия авторов недопустимо и будет преследоваться!


ОБОГРЕВ Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 Б, мощность потребления 1 квт. Применение других элементов позволяет использовать устройство

ГЕНЕРАТОР Устройство предназначено для отмотки показаний индукционных электросчетчиков без изменения их схем включения. Применительно к электронным и электронно-механическим счетчикам, в конструкцию которых

Краткое описание: Способ предназначен для отмотки или торможения электросчетчиков. Устройство представляет собой электронную схему средней сложности. Для использования достаточно включить устройство в

Практическое использование реактивной энергии Дейна Сергей Алексеевич Вот цитата из учебника «Электротехника с основами электроники» авторов Зороховича и Калинина для техникумов. В параграфе «Активная

Основы функционирования преобразовательной электронной техники Выпрямители и инверторы ВЫПРЯМИТЕЛИ НА ДИОДАХ Показатели выпрямленного напряжения во многом определяются как схемой выпрямления, так и используемыми

ИЛТ, ИЛТ модули управления тиристорами Схемы преобразователей на тиристорах требуют управления мощным сигналом, изолированным от схемы управления. Модули ИЛТ и ИЛТ с выходом на высоковольтном транзисторе

Тема 16. Выпрямители 1. Назначение и устройство выпрямителей Выпрямители это устройства, служащие для преобразования переменного тока в постоянный. На рис. 1 представлена структурная схема выпрямителя,

БЛОКИ ПИТАНИЯ БПС-3000-380/24В-100А-14 БПС-3000-380/48В-60А-14 БПС-3000-380/60В-50А-14 БПС-3000-380/110В-25А-14 БПС-3000-380/220В-15А-14 руководство по эксплуатации СОДЕРЖАНИЕ 1. Назначение... 3 2. Технические

2.5 Блок широтно-импульсного регулятора VC63 Блок предназначен для регулирования амплитудного значения напряжения, прикладываемого к первичной обмотке высоковольтного трансформатора. Его конструкция со

2.7 Блок вращения анода RВ07 Для уменьшения удельной плотности потока тепловой мощности, воздействующего на анод рентгеновской трубки в месте фокусировки электронного пучка, в флюорографах применяются

НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР СХЕМОТЕХНИКИ И ИНТЕГРАЛЬНЫХ ТЕХНОЛОГИЙ. РОССИЯ, БРЯНСК СЕТЕВОЙ ИМПУЛЬСНЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ I. ПРИМЕНЕНИЕ ИС ОБЩЕЕ ОПИСАНИЕ Микросхема является представителем класса высоковольтных

1 od 5 Мощный бестрансформаторный блок питания Заманчивая идея избавиться от крупногабаритного и очень тяжелого силового трансформатора в блоке питания усилителя мощности передатчика, давно озадачивает

Электроэнергия - БЕСПЛАТНО! Дистанционная остановка и обратный ход электросчетчика Бесплатная электроэнергия Реверс-прибор (Вариант 1) Реверс-прибор (Вариант 2) Халявное пользование электроэнергией в собственном

2.9 Блок контроля первичных цепей SB71 Блок предназначен для формирования контрольных сигналов, пропорциональных действующему значению первичного напряжения питания и напряжения на конденсаторах сетевого

Драйвер шагового двигателя ADR810/ADR812 ИНСТРУКЦИЯ по эксплуатации Апрель-2010 1 СОДЕРЖАНИЕ 1. НАЗНАЧЕНИЕ УСТРОЙСТВА...3 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ...3 3. ЧЕРТЕЖ КОРПУСА...3 4. КРАТКИЙ ПЕРЕЧЕНЬ ТОГО,

ЕУ/А ОСОБЕННОСТИ w Двухтактный выход с паузой между импульсами w Вход переключения частоты w Kомпактный корпус w Минимальное количество навесных элементов w Малая потребляемая мощность w Возможность применения

DS_ru.qxd.0.0:9 Page ЕУ/А ОСОБЕННОСТИ Двухтактный выход с паузой между импульсами Вход переключения частоты Kомпактный корпус Минимальное количество навесных элементов Малая потребляемая мощность Возможность

Тема 4. Инверторы и аккумуляторные батареи (2 часа) Инвертор - прибор преобразующий постоянное напряжение в переменное. Потребность в инверторах существует для решения задачи питания устройств для бытовой

РЕГУЛЯТОР НАПРЯЖЕНИЯ РЕНАП-1Д Техническое описание и инструкция по эксплуатации 2 1. ВВЕДЕНИЕ Настоящее техническое описание и инструкция по эксплуатации распространяется на регуляторы переменного тока

МУСКАТИНЬЕВ А. В., ПРОНИН П. И. ИНВЕРТОРНЫЙ ИСТОЧНИК ПИТАНИЯ ДЛЯ СВАРКИ Аннотация. В статье обсуждаются проблемы выбора силовой схемы для сварочного источника. Приводится описание электрической принципиальной

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ ЦЕНТР ДЕТСКОГО ТЕХНИЧЕСКОГО ТВОРЧЕСТВА ГОРОДА ТИХОРЕЦКА МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ ТИХОРЕЦКИЙ РАЙОН Технический проект «Регулируемый блок

ИЛТ Драйвер управления тиристором Схемы преобразователей на тиристорах требуют изолированного управления. Логические изоляторы потенциала типа ИЛТ совместно с диодным распределителем допускают простое

ВНИМАНИЕ! В связи с изменением схемы выпрямителя настоящим эксплуатационным документом следует пользоваться с учетом следующих изменений 1. Принципиальная электрическая схема выпрямителя, схема электрическая

5 Лекция 2 ИНВЕРТОРЫ План. Введение 2. Двухтактный инвертор 3. Мостовой инвертор 4. Способы формирования напряжения синусоидальной формы 5. Трехфазные инверторы 6. Выводы. Введение Инверторы устройства,

НТЦ СИТ НАУЧНО-ТЕХНИЧЕСКИЙ ЦЕНТР СХЕМОТЕХНИКИ И ИНТЕГРАЛЬНЫХ ТЕХНОЛОГИЙ. РОССИЯ, БРЯНСК ПОЛУМОСТОВОЙ АВТОГЕНЕРАТОР ВИП ОБЩЕЕ ОПИСАНИЕ Микросхема является интегральной схемой высоковольтного полумостового

Лабораторная работа 5 Исследование способов регулирования потока оптического излучения Цель работы: исследовать и определить наиболее эффективные способы регулирования потока оптического излучения. Общие

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени В.Н. КАРАЗИНА ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ ФИЗИКО ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ Рекомендовано кафедрой общей и прикладной физики,

ЗАДАЧА 1 Определить общий ток до разветвления в цепи, показанной на рисунке, и напряжение на С 3 при частоте 10 Гц, если известно, что U =110 B, С 1 = 100 мкф, С 2 = 150 мкф, С 3 = 94 мкф. ЗАДАЧА 2 Какова

МОДЕЛИРОВАНИЕ СХЕМЫ ИСТОЧНИКА ТОКА ДЛЯ ПОДДЕРЖАНИЯ УДК 634 МОДЕЛИРОВАНИЕ СХЕМЫ ИСТОЧНИКА ТОКА ДЛЯ ПОДДЕРЖАНИЯ РАЗРЯДА В ЛАМПАХ НАКАЧКИ ТВЕРДОТЕЛЬНЫХ ЛАЗЕРОВ ВВ Тогатов, ЕМ Соложина, РА Сидоров Предложена

Задача 1 Демонстрационный вариант отборочного этапа Электроника 11 класс Амперметр предназначен для измерения силы тока I A = 2 A и имеет внутреннее сопротивление R А = 0,2 Ом. Найти сопротивление шунта

ЧТО ТАКОЕ ПРЕОБРАЗОВАТЕЛЬ ЧАСТОТЫ? Применение преобразователей энергии в электроприводе обусловлено в основном необходимостью регулирования скорости вращения электродвигателей. У большинства первичных

6.3. ДВУХТАКТНЫЕ УСИЛИТЕЛИ МОЩНОСТИ Двухтактные УМ могут быть трансформаторными и бестрансформаторными. Двухтактный трансформаторный УМ представляет собой два однотактных каскада с общими цепями нулевого

Конструктивное решение разработки твердотельного реле постоянного тока Вишняков А., Бурмель А., группа 31-КЭ, ФГБОУ ВПО «Госуниверситет- УНПК» Твердотельные реле используются в промышленных системах управления

Базовые узлы ИВЭП ИВЭП представляют собой сочетание различных функциональных узлов электроники, выполняющих различные виды преобразования электрической энергии, а именно: выпрямление; фильтрацию; трансформацию

Практические занятия по ТЭЦ. Список задач. занятие. Расчёт эквивалентных сопротивлений и других соотношений.. Для цепи a c d f найти эквивалентные сопротивления между зажимами a и, c и d, d и f, если =

СТАБИЛИЗИРОВАННЫЙ ИСТОЧНИК ПИТАНИЯ ЛАМПОВОГО УСИЛИТЕЛЯ Евгений Карпов В статье рассмотрен вариант реализации простого многоканального стабилизатора, позволяющего полностью исключить влияние сети на работу

Микросхемы КР1182ПМ1 фазовый регулятор мощности Микросхемы КР1182ПМ1 еще одно решение задачи регулирования мощности высоковольтных мощных нагрузок. Микросхемы можно применять для плавного включения и выключения

105 Лекция 11 ИМПУЛЬСНЫЕ ПРЕОБРАЗОВАТЕЛИ С ГАЛЬВАНИЧЕСКИМ РАЗДЕЛЕНИЕМ ВХОДА И ВЫХОДА План 1. Введение. Прямоходовые преобразователи 3. Обратноходовой преобразователь 4. Синхронное выпрямление 5. Корректоры

11 КЛАСС ВАРИАНТ Время выполнения заданий 120 минут. Часть А Задания А1 А10 Выберите среди предложенных ответов свой единственный и заштрихуйте соответствующий ему овал в бланке ответов на пересечении

Лекция 7 Тема: Специальные усилители 1.1 Усилители мощности (выходные каскады) Каскады усиления мощности обычно являются выходными (оконечными) каскадами, к которым подключается внешняя нагрузка, и предназначены

Генератор 20Гц 100 кгц 2кВт Схемы 201г. Технические характеристики Генератор предназначен для работы на активную и /или индуктивную нагрузку и обеспечивает следующие параметры: - выходное напряжение 20

Основные технические характеристики Мощность, Вт 180 Выходное напряжение, В2х25 Максимальный ток нагрузки, 3,5 А Размах пульсаций, % для частоты преобразования 10 100 Гц для частоты преобразования 2 27

Зарядное устройство зу 1101 на тиристорах ку 202 схема >>> Зарядное устройство зу 1101 на тиристорах ку 202 схема Зарядное устройство зу 1101 на тиристорах ку 202 схема В зависимости от чувствительности

109 Лекция ЦЕПИ С ДИОДАМИ И ИХ ПРИМЕНЕНИЕ План 1. Анализ цепей с диодами.. Источники вторичного электропитания. 3. Выпрямители. 4. Сглаживающие фильтры. 5. Стабилизаторы напряжения. 6. Выводы. 1. Анализ

На схеме нелинейной цепи сопротивления линейных резисторов указаны в Омах; ток J = 0,4 А; характеристика нелинейного элемента задана таблично. Найти напряжение и ток нелинейного элемента. I, А 0 1,8 4

Работа 352 Определение ёмкостного сопротивления конденсатора в цепи переменного тока Решаемые задачи Знакомство с устройством, принципами работы и включением в рабочую схему двухканального осциллографа.

БЛОКИ ПИТАНИЯ ИПС-1000-220/110В-10А ИПС-1500-220/110В-15А ИПС-1000-220/220В-5А ИПС-1500-220/220В-7А DC(АС) / DC-1000-220/110В-10А (ИПС-1000-220/110В-10А(DC/AC)/DC) DC(АС) / DC-1500-220/110В-15А (ИПС-1500-220/110В-15А(DC/AC)/DC)

НТЦ СИТ НАУЧНОТЕХНИЧЕСКИЙ ЦЕНТР СХЕМОТЕХНИКИ И ИНТЕГРАЛЬНЫХ ТЕХНОЛОГИЙ. РОССИЯ, БРЯНСК СХЕМА ФАЗОВОГО РЕГУЛЯТОРА ОБЩЕЕ ОПИСАНИЕ Микросхема (старое название КР1182ПМ1) является новым решением проблемы регулировки

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/24В-25А ИПС-1200-220/24В-35А ИПС-1500-220/24В-50А ИПС-950-220/48В-12А ИПС-1200-220/48В-25А ИПС-1500-220/48В-30А ИПС-950-220/60В-12А ИПС-1200-220/60В-25А

Что такое выпрямитель Для чего нужны выпрямители Как известно, электрическая энергия производится, распределяется и потребляется преимущественно в виде энергии переменного тока. Так удобнее. Однако потребители

Лабораторная работа 2 Исследование преобразовательных устройств: инвертора,конвертора в программной среде моделирования электронных схем Electronics Workbench 5.12. Цель работы: Ознакомиться с работой

Наиболее часто применяемые устройства импульсного (стартерного) зажигания люминесцентных ламп обладают некоторыми существенными недостатками: неопределенным временем зажигания, перегрузкой электродов лампы

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/110В-10А-2U ИПС-1500-220/110В-15А-2U ИПС-2000-220/110В-20А-2U ИПС-1000-220/220В-5А-2U ИПС-1500-220/220В-7А-2U ИПС-2000-220/220В-10А-2U DC(АС) / DC-1000-220/110В-10А-2U

Электрооборудование и электронные системы транспортных средств ДМ_Э_02_02_04 «Выпрямители» Автомеханик 5-го разряда филиал КСТМиА УО «РИПО» Минск 2016 Занятие 1. Содержание 1. Основные сведения о выпрямителях.

Лекция 3 «Выпрямители переменного напряжения». Для преобразования переменного сетевого напряжения в постоянное используются схемы, называемые «выпрямителями». Для реализации функции выпрямления в подобных

Соловьев И.Н., Гранков И.Е. ИНВАРИАНТНЫЙ К НАГРУЗКЕ ИНВЕРТОР Актуальной, сегодня, является задача обеспечения работы инвертора с нагрузками различных типов. Работа инвертора с линейными нагрузками достаточно

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-1000-220/24В-25А-2U (DC(АС) / DC-1000-220/24В-25А-2U) ИПС-1200-220/24В-35А-2U (DC(АС) / DC-1200-220/24В-35А-2U) ИПС-1500-220/24В-50А-2U (DC(АС) / DC -1500-220/24В-50А-2U)

RU103252 (21), (22) Заявка: 2010149149/07, 02.12.2010 (24) Дата начала отсчета срока действия патента: 02.12.2010 Приоритет(ы): (22) Дата подачи заявки: 02.12.2010 (45) Опубликовано: 27.03.2011Адрес для

Существуют приборы, которые в процессе эксплуатации требуют периодического включения -выключения, так сказать, работы в повторно-кратковременном режиме. Например, при постоянно включенной во время сеанса

ЛАБОРАТОРНАЯ РАБОТА 3 ИССЛЕДОВАНИЕ ВЫПРЯМИТЕЛЬНОГО УСТРОЙСТВА Цель работы: ознакомиться со схемами выпрямителей и сглаживающих фильтров. Исследовать работу выпрямительного устройства с переменной нагрузкой.

К1182ПМ1Р СХЕМА ФАЗОВОГО РЕГУЛЯТОРА I. ПРИМЕНЕНИЕ ИС. ОБЩЕЕ ОПИСАНИЕ Микросхема 1182ПМ1 является новым решением проблемы регулировки мощности в классе высоковольтных мощных электронных схем. Благодаря

3.1 Общие сведенья 3 Моноблок MB01 В состав рентгеновского питающего устройства IEC-F7 входит моноблок, включающий в себя высоковольтный трансформаторно-выпрямительный блок, накальный трансформатор и рентгеновскую

Феррорезонансный, беззатратный высокочастотный блок питания для радиоаппаратуры с частотой 2500 Гц, эквивалентной мощностью 279 Вт В блоке питания для питания радиоаппаратуры применяется ферритовый трансформатор

Самостоятельная работа студентов. Электрические цепи постоянного тока Задача 1. В схеме (рис. 1) R1 = R3 = 40 Ом, R2 = 20 Ом, R4 = 30 Ом, I3 = 5 А. Вычислить напряжение источника U и ток I4. Ответ: 900

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2006. 1(43). 147 152 УДК 62-50:519.216 ПОСТРОЕНИЕ ДЕМПФИРУЮЩИХ ЦЕПЕЙ ДЛЯ МОЩНЫХ ИМПУЛЬСНЫХ ПРЕОБРАЗОВАТЕЛЕЙ Е.А. МОИСЕЕВ Приводятся практические рекомендации по выбору элементов

Прочие компоненты системы питания МИК-ЭН 300-С4Д28-8 электронная нагрузка с управлением от ПК Измеряемое входное напряжение, В до 350 В Количество каналов нагрузки 11 Количество каналов с 3-мя уровня нагрузки

СВАРОЧНЫЕ ВЫПРЯМИТЕЛИ 1. Устройство и классификация сварочных выпрямителей 2. Схемы выпрямления 3. Выпрямители сварочные параметрические 3.4. Выпрямители сварочные с фазовым управлением 3.5. Инверторные

ИСТОЧНИКИ ПИТАНИЯ СТАБИЛИЗИРОВАННЫЕ ИПС-9000-380/24В-300А-3(2, 1)/3(3000)-4U ИПС-9000-380/36В-240А-3(2, 1)/3(3000)-4U ИПС-9000-380/48В-180А-3(2, 1)/3(3000)-4U ИПС-9000-380/60В-150А-3(2, 1)/3(3000)-4U ИПС-9000-380/110В-90А-3(2,

Министерство образования и науки, молодежи и спорта Украины Управление образования и науки Донецкой облгосадминистрации Макеевское высшее профессиональное училище Задания для контроля знаний учащихся специальность

Лекция 8 Тема 8 Специальные усилители Усилители постоянного тока Усилителями постоянного тока (УПТ) или усилителями медленно изменяющихся сигналов называются усилители, которые способны усиливать электрические

боюсь, что 20 евро были потрачены зря

Пожалуйста зарегистрируйся для просмотра данной ссылки на страницу.

Вариант №1. “Электронный. Генератор обратной (реактивной) мощности 1-5 КВт.”

Устройство для отмотки или торможения счетчика. Устройство включается в любую розетку, никакие вмешательства в электропроводку и заземление не нужны. Потребители питаются как обычно, генератор им не мешает. Но индукционный счетчик (с диском) при этом считает в обратную сторону, а электронные и электронно-механические останавливаются, что тоже неплохо. Устройство приводит к циркуляции мощности в двух направлениях через счетчик. В прямом направлении за счет высокочастотной модуляции тока осуществляется частичный учет, а в обратном – полный. Поэтому счетчик воспринимает работу устройства как источник энергии, питающий из Вашей квартиры всю электрическую сеть. Счетчик при этом считает в обратную сторону со скоростью, равной разности полного и частичного учета. Электронный счетчик будет полностью остановлен и позволит безучетно потреблять энергию. Если мощность потребителей окажется большей, чем обратная мощность устройства, то счетчик будет вычитать последнюю из мощности потребителей. Устройство заставляет счетчик считать в обратную сторону со скоростью до 5 кВт в час (в зависимости от выбранной Вами мощности отмотки, в инструкции приведены все данные для сбора устройства с мощностью отмотки 1, 2, 3 , 4 и 5 КВт, приведена спецификация элементов, принципиальная схема, и полный перечень элементов для всех вариантов мощности). Устройство построено всего на двух транзисторах, двух логических микросхемах серии К155, а также содержит десяток других распространенных деталей. Собрать и настроить его cможет радиолюбитель и без большого опыта. Если счетчик оборудован внешними трансформаторами тока и есть возможность подключиться к их вторичным обмоткам, то мощность отмотки умножается на коэффициент трансформации. Например, если трансформатор тока ТТ - 0,38 1000/5, один генератор обеспечит скорость отмотки 1000 кВт*час. Можно применить три генератора, по одному на каждую фазу. Будет тройной эффект. Применим для трехфазного счетчика. При включении в розетку будет вычитать заданную мощность(1-5 КВт) из общей мощности учета на фазе, к которой подключен.

Особенности.

Положительные: Не нужно никакое вмешательство в электропроводку. Вся электропроводка остается нетронутой. Заземление не нужно. Можно применять устройство для как однофазных счетчиков при напряжении 220В, так и для трехфазных 380В, просто включая в любую розетку после счетчика. Потребители с генератором не связаны. Устройство защитного отключения (УЗО) не мешает работе устройства.

Отрицательные: Необходимо собирать устройство... Достаточно высокая стоимость способа.

Стоимость документации с подробной иллюстрированной инструкцией, в которую входит электрическая принципиальная схема, инструкция по сборке и настройке, полный перечень всех используемых элементов и материалов: 500 рублей.

Предупреждение!

Уважаемые посетители сайта! В своих попытках отмотки или обмана счетчиков Вы скорее всего преуспеете, если уж поставили перед собой такую задачу! Но не забывайте достигнув успеха об осторожности и разумном расходовании природных ресурсов. Ведь после нас этим должны пользоваться еще и наши дети и внуки!!!

Немногие, наверное, вспомнят, как раньше отматывали показания счетчика электроэнергии. Делали это трансформатором, который необходимо было заземлить. Заземлителем обычно служила батарея или другая коммуникация. Это было очень опасно для жизни. Теперь же никаких посторонних вмешательств в электрическую проводку и заземляющих проводников. Включил в обычную розетку генератор обратной мощности и жди результата. Обычный электросчетчик с диском – мотает цифры в обратную сторону, современный электронный счетчик – просто останавливается.

Расчет мощности по показаниям электросчетчика

Приборы для учета потребляемой энергии не всегда верно отсчитывают используемую мощность электронных компонентов. Для того, чтобы проверить работу электросчетчика необходимо:

  • иметь возможность осмотреть устройство. Электросчетчик может находиться в квартире или на лестничной площадке;
  • на передней панели указан класс точности прибора – это допустимая величина погрешности в %. Например, если класс точности 3, то устройство за использованный 100Вт/ч посчитает показатель – от 97 до 103 Вт/ч. Это будет нормой рассчитанного электричества для данного счетчика;
  • для проверки работы включите в сеть только одну лампу накаливания на один час, и смотрите за показаниями на электросчетчике.

Если Ваш прибор для учета электроэнергии не оправдал испытания – следует подать заявку на его замену в Энергонадзор.

Как рассчитать мощность электрического тока

Электрический счетчик рассчитывает не потребляемую электронными компонентами мощность, а работу, проделанную электрическим током, а правильнее – израсходованную при этом энергию. Рассчитать мощность электросчетчика можно двумя методами:

  • посчитать количество оборотов за единицу времени и сравнить этот показатель цифрой, указанной на счетчике. Например, если стоит показатель 300 , это значит, что диск прибора совершает 300 оборотов за один час. Значит за 10 минут он должен совершить 50 оборотов;
  • и наоборот: задаем количество оборотов и смотрим, за какое время счетчик проделает эту работу.

Расход электроэнергии

Для того, чтобы контролировать расход электроэнергии, необходимо знать точную цифру, потребляемую Вашими электроприборами. Число, показывающее на используемую мощность, указывается, обычно, в технических характеристиках электроустройства. Зная это число и возможные способы проверки этого показателя, можно контролировать расход электроэнергии. Или приобрести генератор обратной мощности электросчетчика и забыть о расчетах. Однако, следует заметить, что промышленностью выпускаются уже «умные» приборы для учета электричества, которые могут зафиксировать обман. Тогда серьезных проблем с Энергонадзором уже не избежать!