Виды геометрических моделей. Геометрические модели, используемые в системах автоматизированного проектирования Что из себя представляют геометрические модели

Это модели, которые с определённой точностью описывают геометрические свойства проектируемого объекта. Геометрические свойства – это пространственное отношение и формы (фигуры). В геометрии понятие пространство и фигуры определяется исходя из понятия множества. Пространство определяется как множество каких-либо элементов (точек), а фигура определяется как произвольное множество точек в данном пространстве.

В САПР используется математическое представление геометрической модели. Наука, которая занимается этим – инженерная (прикладная) геометрия. При геометрическом моделировании объект проектирования предстаёт как геометрический объект (ГО). Для любого геометрического объекта можно определить совокупность независимых условий, однозначно задающих этот объект, то есть позволяющие для любой точки пространства установить, принадлежит эта точка объекту или нет. Такую совокупность независимых условий называют определителем геометрического объекта. В число условий входят геометрические фигуры (точки, линии, поверхности,) и определённая последовательность действий, посредством которых из этих геометрических фигур можно построить данный геометрический объект. Эта последовательность действий называется алгоритмом воспроизведения данного геометрического объекта.

Количественно геометрический объект характеризуется параметрами . При выделении параметров важно учитывать области их существования, например, для треугольника числа, выражающие длины сторон, всегда больше нуля и сумма двух чисел больше третьего числа.

Для описания геометрической фигуры необходимо выделить параметры двух типов – формы и положения . Параметры формы характеризуют размеры и форму геометрической фигуры, они не изменяются при изменении положения фигуры в пространстве; параметры положения характеризуют положение геометрической фигуры в пространстве. Параметризация формы производится в системе координат, которая связана с самой фигурой и перемещается вместе с ней. Параметризация положения фигуры производится в системе координат независимо от фигуры.

При описании геометрического объекта различают подмножества граничных точек – поверхность геометрического объекта ; и подмножество внутренних точек – тело геометрического объекта .

Геометрические объекты бывают сложной формы и сложной структуры. Геометрические объекты сложной формы – это те, у которых поверхность сложного характера (например, корпус судна, автомобиля). Геометрические объекты сложной структуры – состоящие из нескольких ГО.

В автоматизированном проектировании известны два основных подхода к геометрическому модулированию:

Первый подход состоит в том, что выделяется некоторый набор геометрических фигур, которые в данном классе задач считаются элементарными (базовыми). Наряду с геометрическим набором вводится набор действий – геометрических операций над этим набором. Геометрический объект в этом случае называется составным (конструктивным).

Второй подход непосредственное описание и воспроизведение геометрических свойств объекта без использования вспомогательных, заранее заготовленных фиксированных фигур. В этом случае непосредственно описывается закон образования геометрического объекта как множество точек, обладающих соответствующими свойствами.

Подход, основанный на «прямом» моделировании геометрического объекта, в зависимости от способа формирования можно разделить на кусочно-аналитические и алгебро-логические модели объекта .

В кусочно-аналитических моделях поверхность объекта представляется отдельными кусками гладких поверхностей, называемыми гранями. Каждая грань задаётся своим уравнением поверхности и границами грани. Рёбра геометрического объекта или границы грани есть линии пересечения поверхностей, ограничивающие геометрический объект. Точки пересечения рёбер называются вершинами .

Существует три вида моделей: стержневая, оболочная и объемная.

Стержневая модель геометрического объекта позволяет весьма просто дать форму изображения проектируемого объекта путём построения проволочно-каркасной модели геометрического объекта. В такой модели описываются только рёбра и вершины геометрического объекта, грани не описываются (рис.1а).Ребра представлены в виде стержней, соединенных в узлах (вершинах 1,2,3....). Основными уравнениями для описания такой модели являются уравнения прямой линии в трехмерном пространстве. Такая модель является подмоделью, но она позволяет оперативно осуществлять вывод изображения геометрического объекта, а также выполнять такие операции, как построение аксонометрических и перспективных проекций.


Математическое описание моделей такого рода сравнительно простое, что обуславливает высокое быстродействие программного обеспечение. К недостаткам таких моделей следует отнести сложность или невозможность представления внутреннего облика объекта, построения произвольных его разрезов и сечений.

Геометрические модели объекта

а – стержневая; б - оболочечная

Оболочечная модель объекта (рис.1б) , основана на представлении внешнего облика объекта в виде совокупности поверхностей, являющихся гранями модели (А, Б, В...). Линии пересечения поверхностей образуют ребра модели.

Такая модель описывается системой уравнений поверхностей и может быть использована для моделирования внешнего облика объектов любой формы. Основной ее недостаток невозможность представления внутреннего облика объекта, построение его разрезов и сечений.


Наиболее современной моделью, нашедшее широкое применение в САПР, является объемная (твердотелая модель). Общепринятым порядком моделирования твердого тела является последовательность выполнения булевых операций (объединение, вычитание и пересечение) над объемными элементами (сферы, призмы, цилиндры, конусы, пирамиды и т.д.). Эти элементы описываются теми же уравнениями, что и поверхности оболочечной модели, однако объемные элементы считаются заполненными. Пример выполнения операций с объемными элементами показан на рис.2.

Рис.2. Операции с объемными элементами

При решении большинства задач в области автоматизированного конструирования (К) и технологической подготовки производства (ТПП) надо иметь модель объекта проектирования.

Под моделью объекта понимают его некоторое абстрактное представление, удовлетворяющее условию адекватности этому объекту и позволяющее осуществлять его представление и обработку с помощью компьютера.

Т.о. модель – набор данных, отображающих свойства объекта и совокупность отношений между этими данными.

В модель объекта ПР в зависимости от характера ее исполнения может входить ряд разнообразных характеристик и параметров. Чаще всего модели объектов содержат данные о форме объекта, его размерах, допусках, применяемых материалах, механических, электрических, термодинамических и других характеристиках, способах обработки, стоимости, а также о микрогеометрии (шероховатость, отклонения формы, размеров).

Для обработки модели в графических системах САПР существенным является не весь объем информации об объекте, а та часть, которая определяет его геометрию, т.е. формы, размеры, пространственное размещение объектов.

Описание объекта с точки зрения его геометрии называется геометрической моделью объекта .

Но геометрическая модель может в себя включать еще и некоторую технологическую и вспомогательную информацию.

Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчетов различных характеристик объекта (например, по МКЭ), для подготовки программ для станков с ЧПУ.

В традиционном процессе конструирования обмен информацией осуществляется на основе эскизных и рабочих чертежей с использованием нормативно-справочной и технической документации. В САПР этот обмен реализуется на основе внутримашинного представления объекта.

Под геометрическим моделированием понимают весь многоступенчатый процесс – от вербального (словесного) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления объекта.

В системах геометрического моделирования могут обрабатываться 2-мерные и 3-хмерные объекты, которые в свою очередь могут быть аналитически описываемыми и неописываемыми. Аналитически неописываемые геометрические элементы, такие как кривые и поверхности произвольной формы, используются преимущественно при описании объектов в автомобиле-, самолето- и судостроении.


Основные виды ГМ

2-мерные модели , которые позволяют формировать и изменять чертежи, были 1-ми моделями, нашедшими применение. Такое моделирование часто применяется и до сих пор, т.к. оно намного дешевле (в отношении алгоритмов, использования) и вполне устраивает промышленные организации при решении разнообразных задач.

В большинстве 2-мерных систем геометрического моделирования описание объекта осуществляется в интерактивном режиме в соответствии с алгоритмами, аналогичными алгоритмам традиционного метода конструирования. Расширением таких систем является то, что контурам или плоским поверхностям ставится в соответствие постоянная или переменная глубина изображения. Системы, работающие по такому принципу, называется 2,5-мерными. Они позволяют получать на чертежах аксонометрические проекции объектов.

Но 2-мерное представление часто не удобно для достаточно сложных изделий. При традиционных способах конструирования (без САПР) пользуются чертежами, где изделие может быть представлено несколькими видами. Если изделие очень сложное, его можно представить в виде макета. 3-хмерная модель служит для того, чтобы создать виртуальное представление изделия во всех 3-х измерениях.

Различают 3 вида 3-хмерных моделей:

· каркасные (проволочные)

· поверхностные (полигональные)

· объемные (модели сплошных тел).

· Исторически 1-ми явились каркасные модели . В них хранятся только координаты вершин (x,y,z ) и соединяющие их ребра.

На рисунке видно, как куб может быть воспринят неоднозначно.


Т.к. известны только ребра и вершины, возможны различные интерпретации одной модели. Каркасная модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей, в которых аппроксимирующие поверхности являются плоскостями. На основе каркасной модели можно получать проекции. Но невозможно автоматически удалять невидимые линии и получать различные сечения.

· Поверхностные модели позволяют описывать достаточно сложные поверхности. Поэтому они часто соответствует нуждам промышленности (самолето-, судо-, автомобилестроение) при описании сложных форм и работе с ними.

При построении поверхностной модели предполагается, что объекты ограничены поверхностями, которые отделяют их от окружающей среды. Поверхность объекта тоже становится ограниченной контурами, но эти контуру являются результатом 2-х касающихся или пересекающихся поверхностей. Вершины объекта могут быть заданы пересечением поверхностей, множеством точек, удовлетворяющих какому-то геометрическому свойству, в соответствии с которым определяется контур.

Возможны различные виды задания поверхностей (плоскости, поверхности вращения, линейчатые поверхности). Для сложных поверхностей используются различные математические модели аппроксимации поверхностей (методы Кунса, Безье, Эрмита, В-сплайна). Они позволяют изменять характер поверхности с помощью параметров, смысл которых доступен пользователю, не имеющему специальной математической подготовки.


Аппроксимация поверхностей общего вида плоскими гранями дает преимущество: для обработки таких поверхностей используются простые математические методы. Недостаток: сохранение формы и размеров объекта зависит от числа граней, используемых для аппроксимаций. Чем > число граней, тем < отклонение от действительной формы объекта. Но с увеличением числа граней одновременно увеличивается и объем информации для внутримашинного представления. Вследствие этого увеличивается как время на работу с моделью объекта, так и объем памяти для хранения модели.

· Если для модели объекта существенно разграничение точек на внутренние и внешние, то говорят об объемных моделях . Для получения таких моделей сначала определяются поверхности, окружающие объект, а затем они собираются в объемы.

В настоящее время известны следующие способы построения объемных моделей:

· В граничных моделях объем определяется как совокупность ограничивающих его поверхностей.

Структура может быть усложнена внесением действий переноса, поворота, масштабирования.

Достоинства:

¾ гарантия генерации правильной модели,

¾ большие возможности моделирования форм,

¾ быстрый и эффективный доступ к геометрической информации (например, для прорисовки).

Недостатки :

¾ больший объем исходных данных, чем при CSG способе,

¾ модель логически < устойчива, чем при CSG, т.е. возможны противоречивые конструкции,

¾ сложности построения вариаций форм.

· В CSG-моделях объект определяется комбинацией элементарных объемов с использованием геометрических операций (объединение, пересечение, разность).

Под элементарным объемом понимается множество точек в пространстве.

Моделью такой геометрической структуры является древовидная структура. Узлы (нетерминальные вершины) – операции, а листья – элементарные объемы.

Достоинства:

¾ концептуальная простота,

¾ малый объем памяти,

¾ непротиворечивость конструкции,

¾ возможность усложнения модели,

¾ простота представления частей и сечений.

Недостатки:

¾ ограничение рамками булевых операций,

¾ вычислительноемкие алгоритмы,

¾ невозможность использовать параметрически описанных поверхностей,

¾ сложность при работе с функциями > чем 2-го порядка.

· Ячеечный метод. Ограниченный участок пространства, охватывающий весь моделируемый объект, считается разбитым на большое число дискретных кубических ячеек (обычно единичного размера).

Моделирующая система должна просто записать информацию о принадлежности каждого куба объекту.

Структура данных представляется 3-хмерной матрицей, в которой каждый элемент соответствует пространственной ячейке.

Достоинства:

¾ простота.

Недостатки:

¾ большой объем памяти.

Для преодоления этого недостатка используют принцип разбиения ячеек на подъячейки в особо сложных частях объекта и на границе.

Объемная модель объекта, полученная любым способом, является корректной, т.е. в данной модели нет противоречий между геометрическими элементами, например, отрезок не может состоять из одной точки.

Каркасное представление м.б. использовано не при моделировании, а при отражении моделей (объемных или поверхностных) как один из методов визуализации.

    геометрическая модель - геометрическая модель; отрасл. макет Модель, находящаяся в отношении геометрического подобия к моделируемому объекту … Политехнический терминологический толковый словарь

    геометрическая модель - Нрк макет Модель, находящаяся в отношении геометрического подобия к моделируемому объекту. [Сборник рекомендуемых терминов. Выпуск 88. Основы теории подобия и моделирования. Академия наук СССР. Комитет научно технической терминологии. 1973 г.]… …

    Геометрическая модель местности - (фототопография) совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков... Источник: ГОСТ Р 52369 2005. Фототопография. Термины и определения (утв. Приказом… … Официальная терминология

    геометрическая модель местности (фототопография) - Совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков. [ГОСТ Р 52369 2005] Тематики фототопография Обобщающие термины виды топографических фотоснимков и их… … Справочник технического переводчика

    геометрическая модель местности - 37 геометрическая модель местности (фототопография): Совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков. Источник: ГОСТ Р 52369 2005: Фототопография. Термины и… …

    электронная геометрическая модель (геометрическая модель) - электронная геометрическая модель (геометрическая модель): Электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров. [ГОСТ 2.052 2006, статья 3.1.2] Источник … Словарь-справочник терминов нормативно-технической документации

    Электронная геометрическая модель изделия - Электронная геометрическая модель (геометрическая модель): электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ.… … Официальная терминология

    Абстрактное или вещественное отображение объектов или процессов, адекватное исследуемым объектам (процессам) в отношении некоторых заданных критериев. Напр., математическая модель слоенакопления (абстрактная модель процесса), блок диаграмма… … Геологическая энциклопедия

    Модель изделия каркасная - Каркасная модель: трехмерная электронная геометрическая модель, представленная пространственной композицией точек, отрезков и кривых, определяющих в пространстве форму изделия... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. ЭЛЕКТРОННАЯ… … Официальная терминология

    Модель изделия поверхностная - Поверхностная модель: трехмерная электронная геометрическая модель, представленная множеством ограниченных поверхностей, определяющих в пространстве форму изделия... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. ЭЛЕКТРОННАЯ МОДЕЛЬ… … Официальная терминология

    Модель изделия твердотельная - Твердотельная модель: трехмерная электронная геометрическая модель, представляющая форму изделия как результат композиции заданного множества геометрических элементов с применением операций булевой алгебры к этим геометрическим элементам...… … Официальная терминология

Книги

  • Адаптивная норма человека. Симметрия и волновой порядок электрофизиологических процессов , Н. В. Дмитриева. В настоящей работе дан новый подход к определению адаптивной нормы человека на основе обобщения опыта работы полипараметрических когнитивных моделей разных физиологических процессов…
  • Теория реальной относительности , Е. А. Губарев. В первой части книги на основе пространства событий четырехмерных ориентируемых точек описана относительность неинерциальных (ускоренных и вращающихся) систем отсчета, связанных с реальными…

Геометрическое моделирование

Векторная и растровая графика.

Графика бывает двух видов - векторная и растровая. Основное отличие - в принципе хранения изображения. Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и еще одно преимущество - при изменении размеров изображения не изменяется размер файла.Растровая графика - это прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей).

Растровое изображение можно сравнить с детской мозаикой, когда картинка составляется из цветных квадратиков. Компьютер запоминает цвета всех квадратиков подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большего объема памяти. Их сложно масштабировать и еще сложнее редактировать. Чтобы увеличить изображение, приходится увеличивать размер квадратиков, и тогда рисунок получается "ступенчатым". Для уменьшения растрового рисунка приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается, его мелкие детали становятся неразборчивыми. Этих недостатков лишена векторная графика. В векторных редакторах рисунок запоминается как совокупность геометрических фигур - контуров, представленных в виде математических формул. Чтобы пропорционально увеличить объект, достаточно просто изменить одно число: коэффициент масштабирования. Никаких искажений ни при увеличении, ни при уменьшении рисунка не возникает. Поэтому, создавая рисунок, вы можете не думать о его конечных размерах - вы всегда можете изменить их.

Геометрические преобразования

Ве́кторная гра́фика - это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Рассмотрим, к примеру, окружность радиуса r. Список информации, необходимой для полного описания окружности, таков:



радиус r ;

координаты центра окружности;

цвет и толщина контура (возможно прозрачный);

цвет заполнения (возможно прозрачный).

Преимущества этого способа описания графики над растровой графикой:

Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта).

Соответственно, можно бесконечно увеличить, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.

При увеличении или уменьшении объектов толщина линий может быть постоянной.

Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах ((англ.)), которые ведут к наилучшей возможной растеризации на растровых устройствах.

У векторной графики есть два фундаментальных недостатка.

Не каждый объект может быть легко изображен в векторном виде. Кроме того, количество памяти и времени на отображение зависит от числа объектов и их сложности.

Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет - трассировка растра обычно не обеспечивает высокого качества векторного рисунка.

Векторные графические редакторы, типично, позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять основные аффинные преобразования над объектами, изменять z-order и комбинировать примитивы в более сложные объекты.

Более изощрённые преобразования включают булевы операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д.

Векторная графика идеальна для простых или составных рисунков, которые должны быть аппаратно-независимыми или не нуждаются в фотореализме. К примеру, PostScript и PDF используют модель векторной графи

Линии и ломаные линии.

Многоугольники.

Окружности и эллипсы.

Кривые Безье.

Безигоны.

Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье).

Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях.

Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.

Основные виды геометрических моделей

Геометрические модели дают внешнее представление об объекте-оригинале и характеризуются одинаковыми с ним пропорциями геометрических размеров. Эти модели подразделяются на двумерные и трехмерные. Эскизы, схемы, чертежи, графики, живописные работы представляют собой примеры двумерных геометрических моделей, а макеты зданий, автомобилей, самолетов и т.д. – это трехмерные геометрические модели.

Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:

матрица поворота

матрица сдвига

матрица масштабирования

Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/промасштабированный относительно исходного

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Системы геометрического моделирования

Системы геометрического моделирования позволяют работать с формами в трехмерном пространстве. Они были созданы для того, чтобы преодолеть проблемы, связанные с использованием физических моделей в процессе проектирования, такие как - сложность получения сложных форм с точными размерами, а также сложностью извлечения необходимых сведений из реальных моделей для их точного воспроизведения.

Эти системы создают среду, подобную той, в которой создаются физические модели. Другими словами, в системе геометрического моделирования разработчик изменяет форму модели, добавляет и удаляет ее части, детализируя форму визуальной модели. Визуальная модель может выглядеть также как и физическая, но она нематериальна. Однако трехмерная визуальная модель хранится в компьютере вместе со своим математическим описанием, благодаря чему устраняется главный недостаток физической модели - необходимость выполнения измерений для последующего прототипирования или серийного производства. Системы геометрического моделирования делятся на каркасные, поверхностные, твердотельные и немногообразные.

Системы каркасного моделирования

В системах каркасного моделирования форма представляется в виде набора характеризующих ее линий и конечных точек. Линии и точки используются для предоставления трехмерных объектов на экране, а изменение формы осуществляется путем изменения положения и размеров отрезков и точек. Другими словами, визуальная модель представляет собой каркасный чертеж формы, а соответствующее математическое описание представляет собой набор уравнений кривых, координат точек и сведений о связности кривых и точек. Сведения о связности описывают принадлежность точек к конкретным кривым, а также пересечение кривых друг с другом. Системы каркасного моделирования были популярны в ту пору, когда ГМ только начало зарождаться. Их популярность объяснялась тем, что в системах каркасного моделирования создание форм выполнялось через последовательность простых действий, так что пользователям было достаточно легко создавать формы самостоятельно. Однако визуальная модель, состоящая из одних лишь линий, может быть неоднозначной. Более того, соответствующее математическое описание не содержит сведений о внутренних и внешних поверхностях моделируемого объекта. Без этих сведений невозможно рассчитать массу объекта, определить траектории перемещения или создать сетку для конечноэлементного анализа, несмотря на то, что объект кажется трехмерным. Поскольку эти операции являются неотъемлемой частью процесса проектирования, системы каркасного моделирования были постепенно вытеснены системами поверхностного и твердотельного моделирования.

Системы поверхностного моделирования

В системах поверхностного моделирования математическое описание визуальной модели включает в себя не только сведения о характеристических линиях и их конечных точках, но и данные о поверхностях. При работе с отображаемой на экране моделью изменяются уравнения поверхностей, уравнения кривых и координаты точек. Математическое описание может включать сведения о связности поверхностей - как поверхности соединяются друг с другом и по каким кривым. В некоторых приложениях эти сведения могут оказаться очень полезными.

Существуют три стандартных метода создания поверхностей в системах поверхностного моделирования:

1) Интерполяция входных точек.

2) Интерполяция криволинейных точек.

3) Трансляция или вращение заданной кривой.

Системы поверхностного моделирования используются для создания моделей со сложными поверхностями, потому что визуальная модель позволяет оценить эстетичность проекта, а математическое описание позволяет построить программы с точными расчетами траекторий движения.

Системы твердотельного моделирования

Предназначены для работы с объектами, состоящими из замкнутого объема, или монолита. В системах твердотельного моделирования, в отличии от систем каркасного и поверхностного моделирования, не допускается создание набора поверхностей или характеристических линий, если они не образуют замкнутого объема. Математическое описание объекта, созданного в системе твердотельного моделирования содержит сведения, по которым система может определить, где находится линия либо точка: внутри объема, снаружи него или на его границе. При этом можно получить любую информацию об объеме тела, а значит, могут быть использованы приложения, работающие с объектом на уровне объема, а не на поверхностях.

Однако системы твердотельного моделирования требуют большего количества входных данных по сравнению с количеством данных, дающих математическое описание. Если бы система требовала от пользователя ввода всех данных для полного математического описания, она стала бы слишком сложной для пользователей, и они бы отказались от нее. Поэтому разработчики таких систем стараются представить простые и естественные функции, чтобы пользователи могли работать с объемными формами, не вдаваясь в подробности математического описания.

Функции моделирования, поддерживаемые большинством систем твердотельного моделирования, могут быть разделены на пять основных групп:

1) Функции создания примитивов, а также функции добавления, вычитания объема - булевские операторы. Эти функции позволяют проектировщику быстро создать форму, близкую к окончательной форме детали.

2) Функции создания объемных тел путем перемещения поверхности. Функция заметания позволяет создавать объемное тело трансляцией или вращением области, заданной на плоскости.

3) Функции, предназначенные главным образом для изменения существующей формы. Типичными примерами являются функции скругления или плавного сопряжения и поднятия.

4) Функции позволяющие непосредственно манипулировать составляющими объемных тел, то есть по вершинам, ребрам и граням.

5) Функции, используя которые проектировщик может моделировать твердое тело при помощи свободных форм.

Немногообразные системы моделирования

Системы твердотельного моделирования позволяют пользователю создавать тела с замкнутым объемом, то есть, говоря математическим языком, тела, представляющие собой многообразия. Другими словами, такие системы запрещают создание структур, не являющихся многообразными. Нарушениями условия многообразности являются, например касание двух поверхностей в одной точке, касание двух поверхностей вдоль открытой или замкнутой кривой, два замкнутых объема с общей гранью, ребром или вершиной, а также поверхности, образующие структуры типа сот.

Запрет на создание немногообразных моделей считался одним из достоинств систем твердотельного моделирования, поскольку благодаря этому любую созданную в такой системе модель можно было бы изготовить. Если же пользователь хочет работать с системой геометрического моделирования на протяжении всего процесса разработки, это достоинство оборачивается другой стороной.

Абстрактная модель со смешением измерений удобна тем, что она не стесняет творческую мысль конструктора. Модель со смешанными измерениями может содержать свободные ребра, слоистые поверхности и объемы. Абстрактная модель полезна также тем, что она может служить основой для проведения анализа. На каждом этапе процесса проектирования могут применяться свои аналитические средства. Например, методом конечных элементов, непосредственно на исходном представлении модели, что позволяет автоматизировать обратную связь между этапами проектирования и анализа, которая в настоящий момент реализуется конструктором самостоятельно. Немногообразные модели незаменимы как этап развития проекта от неполного описания на низких уровнях до готового объемного тела. Системы немногообразного моделирования позволяют использовать каркасные, поверхностные, твердотельные и сотовые модели одновременно в одной и той же среде моделирования, расширяя диапазон доступных моделей.

Описание поверхностей

Важной составной частью геометрических моделей является описание поверхностей. Если поверхности детали -- плоские грани, то модель может быть выражена достаточно просто определенной информацией о гранях, ребрах, вершинах детали. При этом обычно используется метод конструктивной геометрии. Представление с помощью плоских граней имеет место и в случае более сложных поверхностей, если эти поверхности аппроксимировать множествами плоских участков -- полигональными сетками. Тогда можно поверхностную модель задать одной из следующих форм:

1) модель есть список граней, каждая грань представлена упорядоченным списком вершин (циклом вершин); эта форма характеризуется значительной избыточностью, так как каждая вершина повторяется в нескольких списках;

2) модель есть список ребер, для каждого ребра заданы инцидентные вершины и грани. Однако аппроксимация полигональными сетками при больших размерах ячеек сетки дает заметные искажения формы, а при малых размерах ячеек оказывается неэффективной по вычислительным затратам. Поэтому более популярны описания неплоских поверхностей кубическими уравнениями в форме Безье или 5-сплайнов.

Знакомство с этими формами удобно выполнить, показав их применение для описания геометрических объектов первого уровня -- пространственных кривых.

Примечание. Геометрическими объектами нулевого, первого и второго уровней называют соответственно точки, кривые, поверхности.

В подсистемах МГиГМ используются параметрически задаваемые кубические кривые

геометрический конструктивный моделирование поверхность

x(t) = axt3 + bxt2 + cxt + dx ;

y(t) = ay t3 +X by t2 + cy t + dy ;

z(t) = a.t3 + b_t2 + cj + d_,

где 1 > t > 0. Такими кривыми описывают сегменты аппроксимируемой кривой, т. е. аппроксимируемую кривую разбивают на сегменты и каждый сегмент аппроксимируют уравнениями (3.48).

Применение кубических кривых обеспечивает (соответствующим выбором четырех коэффициентов в каждом из трех уравнений) выполнение четырех условий сопряжения сегментов. В случае кривых Безье этими условиями являются прохождение кривой сегмента через две заданные концевые точки и равенство в этих точках касательных векторов соседних сегментов. В случае 5-сплайнов выполняются условия непрерывности касательного вектора и кривизны (т. е. первой и второй производных) в двух концевых точках, что обеспечивает высокую степень гладкости кривой, хотя прохождение аппроксимирующей кривой через заданные точки здесь не обеспечивается. Применение полиномов выше третьей степени не рекомендуется, так как велика вероятность появления волнистости.

В случае формы Безье коэффициенты в (3.48) определяются, во-первых, подстановкой в (3.48) значений (=0к(=1и координат заданных концевых точек Р, и Р4 соответственно, во-вторых, подстановкой в выражения производных

dx/dt = За t2 + 2b + с, X X х"

dy/dt = За, Г2 + 2byt + с,

dz/dt = 3a.t2 + 2b.t + с.

тех же значений / = 0 и / = 1 и координат точек Р2 и Р3, задающих направления касательных векторов (рис. 3.27). В результате для формы Безье получаем

Кривая Безье. (3.27)

для которых матрица М имеет иной вид и представлена в табл. 3.12, а векторы Gx, Gy, G содержат соответствующие координаты точек Р, 1; Р, Р, + 1, Р, + 2.

Покажем, что в точках сопряжения для первой и второй производных аппроксимирующего выражения выполняются условия непрерывности, что требуется по определению В-сплайна. Обозначим участок аппроксимирующего В-сплайна, соответствующий участку [Р, Р +1] исходной кривой, через . Тогда для этого участка и координаты х в точке сопряжения Q/+ , имеем t = 1 и

Для участка в той же точке Qi+| имеем t = 0 и

т. е. равенство производных в точке сопряжения на соседних участках подтверждает непрерывность касательного вектора и кривизны. Естественно, что значение х координаты х точки Qi+1 аппроксимирующей кривой на участке .

равно значению х, подсчитанному для той же точки на участке , но значения координат узловых точек х и х+] аппроксимирующей и аппроксимируемой кривых не совпадают.

Аналогично можно получить выражения для форм Безье и 5-сплайнов применительно к поверхностям с учетом того, что вместо (3.48) используются кубические зависимости от двух переменных.

Размещено на Allbest.ru

Подобные документы

    Статические и динамические модели. Анализ имитационных систем моделирования. Система моделирования "AnyLogic". Основные виды имитационного моделирования. Непрерывные, дискретные и гибридные модели. Построение модели кредитного банка и ее анализ.

    дипломная работа , добавлен 24.06.2015

    Задачи оптимизации сложных систем и подходы к их решению. Программная реализация анализа сравнительной эффективности метода изменяющихся вероятностей и генетического алгоритма с бинарным представлением решений. Метод решения задачи символьной регрессии.

    диссертация , добавлен 02.06.2011

    Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.

    презентация , добавлен 16.10.2014

    Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

    реферат , добавлен 09.09.2010

    Эффективность макроэкономического прогнозирования. История возникновения моделирования экономики в Украине. Особенности моделирования сложных систем, направления и трудности моделирования экономики. Развитие и проблемы современной экономики Украины.

    реферат , добавлен 10.01.2011

    Основные проблемы эконометрического моделирования. Использование фиктивных переменных и гармонических трендов. Метод наименьших квадратов и выборочная дисперсия. Смысл коэффициента детерминации. Расчет функции эластичности. Свойства линейной модели.

    контрольная работа , добавлен 06.11.2009

    Теоретические и методологические основы моделирования развития фирм с рентноориентированным управлением. Экономико-математические основы моделирования динамически сложных систем. Функция заимствования: понятие, сущность, свойства, аналитический вид.

    дипломная работа , добавлен 04.02.2011

    Создание комбинированных моделей и методов как современный способ прогнозирования. Модель на основе ARIMA для описания стационарных и нестационарных временных рядов при решении задач кластеризации. Модели авторегрессии AR и применение коррелограмм.

    презентация , добавлен 01.05.2015

    Методика получения оценок, используемых в процедурах проектирования управленческих решений. Прикладное использование модели многофакторной линейной регрессии. Создание ковариационной матрицы данных и производных от неё паттернов проектирования решений.

    статья , добавлен 03.09.2016

    Анализ сложных систем. Проведение экономического исследования с применением технологии компьютерного моделирования. Построение блок-схем, маршрутов потоков сообщений. Разработка модели работы автобусного маршрута. Многовариантные расчеты модели.