Отопление с помощью тепловых насосов. Все правда о тепловых насосах

К концу XIX века появились мощные холодильные установки, которые могли перекачать тепла как минимум вдвое больше, чем тратилось энергии на приведение их в действие. Это был шок, ведь формально выходило, что тепловой вечный двигатель возможен! Однако при внимательном рассмотрении выяснилось, что до вечного двигателя по-прежнему далеко, а низкопотенциальное тепло, добытое с помощью теплового насоса, и высокопотенциальное тепло, получаемое, например, при сжигании топлива, - это две большие разницы. Правда, соответствующая формулировка второго начала была несколько видоизменена. Так что же такое тепловые насосы? В двух словах, тепловой насос - это современный и высокотехнологичный прибор для отопления и кондиционирования воздуха. Тепловой насос собирает тепло с улицы или из земли и направляет в дом.

Принцип работы теплового насоса

Принцип работы теплового насоса прост: за счёт механической работы либо других видов энергии он обеспечивает концентрацию тепла, ранее равномерно распределённого по некоторому объёму, в одной части этого объёма. В другой части, соответственно, образуется дефицит тепла, то есть холод.

Исторически тепловые насосы впервые начали широко применяться в качестве холодильников - по сути, любой холодильник представляет собой тепловой насос, перекачивающий тепло из холодильной камеры наружу (в комнату или на улицу). Никакой альтернативы этим устройствам до сих пор нет, и при всём многообразии современной холодильной техники базовый принцип остаётся прежним: откачка тепла из холодильной камеры за счёт дополнительной внешней энергии.

Естественно, практически сразу же обратили внимание на то, что заметный нагрев теплообменника конденсатора (у бытового холодильника он обычно выполнен в виде чёрной панели или решётки на задней стенке шкафа) можно было бы использовать и для обогрева. Это уже была идея обогревателя на основе теплового насоса в её современном виде - холодильник наоборот, когда тепло закачивается в замкнутый объём (помещение) из неограниченного внешнего объёма (с улицы). Однако в этой области конкурентов у теплового насоса полно - начиная с традиционных дровяных печей и каминов и заканчивая всевозможными современными отопительными системами. Поэтому многие годы, пока топливо было относительно дешёвым, эта идея рассматривалась как не более чем курьёз, - в большинстве случаев она была абсолютно невыгодна экономически, и лишь крайне редко такое использование было оправдано - обычно для утилизации тепла, откачиваемого мощными холодильными установками в странах с не слишком холодным климатом. И только со стремительным ростом цен на энергоносители, усложнением и удорожанием отопительного оборудования и относительным удешевлением на этом фоне производства тепловых насосов, такая идея становится экономически выгодной сама по себе, - ведь заплатив один раз за довольно сложную и дорогую установку, затем можно будет постоянно экономить на сокращённом расходе топлива. Тепловые насосы являются основой набирающих популярность идей когенерации - одновременной выработки тепла и холода - и тригенерации - выработки сразу тепла, холода и электричества.

Поскольку тепловой насос является сутью любой холодильной установки, то можно сказать, что понятие «холодильная машина» - его псевдоним. Правда, следует иметь в виду, что несмотря на универсальность используемых принципов работы, конструкции холодильных машин всё-таки ориентированы именно на выработку холода, а не тепла - например, вырабатываемый холод концентрируется в одном месте, а получаемое тепло может рассеиваться в нескольких разных частях установки, потому что в обычном холодильнике стоит задача не утилизировать это тепло, а просто избавиться от него.

Классы тепловых насосов

В настоящее время наиболее широко применяются два класса тепловых насосов. К одному классу можно отнести термоэлектрические на эффекте Пельтье, а к другому - испарительные, которые, в свою очередь подразделяются на механические компрессорные (поршневые или турбинные) и абсорбционные (диффузионные). Кроме того, постепенно возрастает интерес к использованию в качестве тепловых насосов вихревых труб, в которых работает эффект Ранка.

Тепловые насосы на эффекте Пельтье

Элемент Пельтье

Эффект Пельтье заключается в том, что при подаче на две стороны специально подготовленной полупроводниковой пластины небольшого постоянного напряжения, одна сторона этой пластины нагревается, а другая - охлаждается. Вот, в общем-то, и готов термоэлектрический тепловой насос!

Физическая суть эффекта состоит в следующем. Пластина элемента Пельтье (он же «термоэлектрический элемент», англ. Thermoelectric Cooler, TEC), состоит из двух слоёв полупроводника с разными уровнями энергии электронов в зоне проводимости. При переходе электрона под действием внешнего напряжения в более высокоэнергетическую зону проводимости другого полупроводника, он должен приобрести энергию. При получении им этой энергии происходит охлаждение места контакта полупроводников (при протекании тока в обратном направлении происходит обратный эффект - место контакта слоёв нагревается дополнительно к обычному омическому нагреву).

Достоинства элементов Пельтье

Достоинством элементов Пельтье является максимальная простота их конструкции (что может быть проще пластины, к которой припаяны два проводка?) и полное отсутствие каких-либо движущихся частей, а также внутренних потоков жидкостей или газов. Следствием этого является абсолютная бесшумность работы, компактность, полное безразличие к ориентации в пространстве (при условии обеспечения достаточного теплоотвода) и очень высокая стойкость к вибрационным и ударным нагрузкам. Да и рабочее напряжение составляет лишь несколько вольт, поэтому для работы вполне достаточно нескольких батареек или автомобильного аккумулятора.

Недостатки элементов Пельтье

Главным недостатком термоэлектрических элементов является их относительно невысокая эффективность - ориентировочно можно считать, что на единицу перекачанного тепла им потребуется вдвое больше подведённой внешней энергии. То есть, подведя 1 Дж электрической энергии, из охлаждаемой области мы сможем удалить лишь 0.5 Дж тепла. Понятно, что все суммарные 1.5 Дж выделятся на «тёплой» стороне элемента Пельтье и их надо будет отвести во внешнюю среду. Это во много раз ниже эффективности компрессионных испарительныхтепловых насосов.

На фоне столь низкого КПД обычно уже не так важны остальные недостатки, - а это небольшая удельная производительность в сочетании с высокой удельной стоимостью.

Использование элементов Пельтье

В соответствии с их особенностями, основная область применения элементов Пельтье в настоящее время обычно ограничивается случаями, когда требуется не очень сильно охладить что-либо не слишком мощное, особенно в условиях сильной тряски и вибраций и при жёстких ограничениях по массе и габаритам, - например, различные узлы и детали электронной аппаратуры, прежде всего военной, авиационной и космической. Пожалуй, самое широкое распространение в быту элементы Пельтье получили в маломощных (5..30 Вт) переносных автомобильных холодильниках.

Испарительные компрессионные тепловые насосы

Схема рабочего цикла испарительного компрессионного теплового насоса

Принцип работы этого класса тепловых насосов заключается в следующем. Газообразный (полностью или частично) хладагент сжимается компрессором до давления, при котором он может превратиться в жидкость. Естественно, при этом он нагревается. Нагретый сжатый хладагент подаётся в радиатор конденсатора, где охлаждается до температуры окружающей среды, отдавая ей излишнее тепло. Это зона нагрева (задняя стенка кухонного холодильника). Если на входе конденсатора значительная часть сжатого горячего хладагента ещё оставалась в виде пара, то при понижении температуры в ходе теплообмена она также конденсируется и переходит в жидкое состояние. Относительно охлаждённый жидкий хладагент подаётся в расширительную камеру, где, проходя через дроссель или детандер, теряет давление, расширяется и испаряется, по крайней мере частично переходя в газообразную форму, и, соответственно, охлаждается, - существенно ниже температуры окружающей среды и даже ниже температуры в зоне охлаждения теплового насоса. Проходя по каналам панели испарителя, холодная смесь жидкого и парообразного теплоносителя отбирает тепло из зоны охлаждения. За счёт этого тепла продолжает испаряться оставшаяся жидкой часть хладагента, поддерживая стабильно низкую температуру испарителя и обеспечивая эффективный отбор тепла. После этого хладагент в виде пара добирается до входа компрессора, который откачивает и вновь сжимает его. Затем всё повторяется сначала.

Таким образом, на «горячем» участке компрессор-конденсатор-дроссель хладагент находится под высоким давлением и преимущественно в жидком состоянии, а на «холодном» участке дроссель-испаритель-компрессор давление низкое, а хладагент в основном находится в парообразном состоянии. И сжатие, и разрежение создаются одним и тем же компрессором. С противоположной от компрессора стороны тракта зоны высокого и низкого давления разделяет дроссель, ограничивающий поток хладагента.

В мощных промышленных холодильниках в качестве хладагента используется ядовитый, но эффективный аммиак, производительные турбокомпрессоры и иногда детандеры. В бытовых холодильниках и кондиционерах хладагентом обычно являются более безопасные фреоны, а вместо турбоагрегатов используются поршневые компрессоры и «капиллярные трубки» (дроссели).

В общем случае изменение агрегатного состояния хладагента необязательно - принцип будет рабочим и для постоянно газообразного хладагента, - однако большая теплота изменения агрегатного состояния многократно повышает эффективность рабочего цикла. Но вот если хладагент будет всё время находиться в жидком виде, эффекта не будет принципиально - ведь жидкость практически несжимаема, а потому ни повышение, ни снятие давления не изменят её температуру..

Дроссели и детандеры

Многократно употребляемые на этой странице термины «дроссель» и «детандер» обычно мало что говорят людям, далёким от холодильной техники. Поэтому следует сказать пару слов об этих устройствах и основном различии между ними.

Дросселем в технике называется устройство, предназначенное для нормирования потока за счёт его принудительного ограничения. В электротехнике это название закрепилось за катушками, призванными ограничить скорость нарастания тока и обычно применяемыми для защиты электросхем от импульсных помех. В гидравлике дросселями, как правило, называют ограничители потока, представляющие собой специально созданные сужения канала с точно рассчитанным (калиброванным) просветом, обеспечивающим нужный поток или необходимое сопротивление потоку. Классическим примером таких дросселей являются жиклёры, широко использовавшиеся в карбюраторных двигателях для обеспечения расчётного поступления бензина при подготовке топливной смеси. Дроссельная заслонка в тех же карбюраторах нормировала поток воздуха - второго необходимого ингредиента этой смеси.

В холодильной технике дроссель используется для ограничения потока хладагента в расширительную камеру и поддержания там условий, необходимых для эффективного испарения и адиабатического расширения. Слишком большой поток может вообще привести к заполнению расширительной камеры хладагентом (компрессор просто не успеет откачать его) или, по крайней мере, к потере там необходимого разрежения. А ведь именно испарение жидкого хладагента и адиабатическое расширение его паров обеспечивает необходимое для работы холодильника падение температуры хладагента ниже температуры окружающей среды.


Принципы работы дросселя (слева), поршневого детандера (в центре) и турбодетандера (слева).

В детандере расширительная камера несколько модернизирована. В ней испаряющийся и расширяющийся хладагент дополнительно совершает механическую работу, перемещая находящийся там поршень или вращая турбину. При этом ограничение потока хладагента может осуществляться за счёт сопротивления поршня или колеса турбины, хотя на деле это обычно требует очень тщательного подбора и согласования всех параметров системы. Поэтому и при использовании детандеров основное нормирование потока может осуществляться дросселем (калиброванным сужением канала подачи жидкого хладагента).

Турбодетандер эффективен лишь при больших потоках рабочего тела, при малом потоке его эффективность близка к обычному дросселированию. Поршневой детандер может эффективно работать с гораздо меньшим расходом рабочего тела, однако конструкция его на порядок сложнее турбины: помимо самого поршня со всеми необходимыми направляющими, уплотнениями и системой возврата, требуются впускные и выпускные клапаны с соответствующим управлением ими.

Преимуществом детандера перед дросселем является более эффективное охлаждение за счёт того, что часть тепловой энергии хладагента превращается в механическую работу и в такой форме отводится из теплового цикла. Более того, эта работа затем может быть использована с пользой для дела, скажем, для привода насосов и компрессоров, как это сделано в «холодильнике Зысина». Зато простой дроссель имеет абсолютно примитивную конструкцию и не содержит ни одной движущейся детали, а потому по надёжности, долговечности, а также простоте и себестоимости изготовления оставляет детандер далеко позади. Именно эти причины обычно ограничивают область применения детандеров мощной криогенной техникой, а в бытовых холодильниках используются менее эффективные, зато практически вечные дроссели, называемые там «капиллярными трубками» и представляющие собой простую медную трубку достаточно большой длины с просветом малого диаметра (обычно от 0.6 до 2 мм), которая обеспечивает необходимое гидравлическое сопротивление для расчётного потока хладагента.

Достоинства компрессионных тепловых насосов

Главное достоинство этого типа тепловых насосов - их высокая эффективность, самая высокая среди современных тепловых насосов. Соотношение подведённой извне и перекачанной энергии у них может достигать 1:3 - то есть на каждый джоуль подведённой энергии из зоны охлаждения будет откачано 3 Дж тепла - сравните с 0.5 Дж у элементов Пельте! При этом компрессор может стоять отдельно, и выработанное им тепло (1 Дж) необязательно отводить во внешнюю среду в том же месте, где отдаются 3 Дж тепла, откачанные из зоны охлаждения.

Кстати, существует отличающаяся от общепринятой, но весьма любопытная и убедительная теория термодинамических явлений. Так вот, один из её выводов заключается в том, что работа по сжатию газа в принципе может составлять лишь порядка 30% от его общей энергии. А это означает, что соотношение подведённой и перекачанной энергии 1:3 соответствует теоретическому пределу и при термодинамических методах перекачки тепла не может быть улучшено в принципе. Впрочем, некоторые производители уже заявляют о достижении соотношения 1:5 и даже 1:6, и это соответствует действительности - ведь в реальных холодильных циклах используется не просто сжатие газообразного хладагента, но и изменение его агрегатного состояния, и именно последний процесс является главным...

Недостатки компрессионных тепловых насосов

К недостаткам этих тепловых насосов можно отнести, во-первых, само наличие компрессора, неизбежно создающего шум и подверженного износу, а во-вторых, необходимость использования специального хладагента и соблюдение абсолютной герметичности на всём его рабочем пути. Впрочем, бытовые компрессионные холодильники, непрерывно работающие по 20 лет и более без какого-либо ремонта, - совсем не редкость. Ещё одна особенность - довольно высокая чувствительность к положению в пространстве. На боку или вверх ногами вряд ли заработает и холодильник, и кондиционер. Но это связано с особенностями конкретных конструкций, а не с общим принципом работы.

Как правило, компрессионные тепловые насосы и холодильные установки проектируются в расчёте на то, что на входе компрессора весь хладагент находится в парообразном состоянии. Поэтому попадание на вход компрессора большого количества неиспарившегося жидкого хладагента может вызвать в нём гидравлический удар и, как результат, серьёзную поломку агрегата. Причиной такой ситуации может быть как износ аппаратуры, так и слишком низкая температура конденсатора - поступающий в испаритель хладагент слишком холодный и испаряется слишком вяло. Для обычного холодильника такая ситуация может возникнуть, если пытаться его включить в очень холодном помещении (например, при температуре около 0°С и ниже) либо если он только что внесён в нормальное помещение с мороза. Для работающего на обогрев компрессионного теплового насоса это может случится, если пытаться отогреть им промороженное помещение при том, что на улице тоже холодно. Не очень сложные технические решения устраняют эту опасность, но они удорожают конструкцию, а при штатной эксплуатации массовой бытовой техники в них нет нужды - такие ситуации не возникают.

Использование компрессионных тепловых насосов

В силу своей высокой эффективности именно этот тип тепловых насосов получил практически повсеместное распространение, вытеснив все остальные в различные экзотические области применения. И даже относительная сложность конструкции и её чувствительность к повреждениям не могут ограничить их широкое использование - почти на каждой кухне стоит компрессионный холодильник или морозильник, а то и не один!

Испарительные абсорбционные (диффузионные) тепловые насосы

Рабочий цикл испарительных абсорбционных тепловых насосов весьма схож с рабочим циклом испарительных компрессионных установок, рассмотренных чуть выше. Главное различие заключается в том, что если в предыдущем случае разрежение, необходимое для испарения хладагента, создаётся при механическом отсосе паров компрессором, то в абсорбционных агрегатах испарившийся хладагент поступает из испарителя в блок абсорбера, где поглощается (абсорбируется) другим веществом - абсорбентом. Тем самым пар удаляется из объёма испарителя и там восстанавливается разрежение, обеспечивающее испарение новых порций хладагента. Необходимым условием является такое «сродство» хладагента и абсорбента, чтобы силы их связывания при поглощении смогли создать существенное разрежение в объёме испарителя. Исторически первой и до сих широко используемой парой веществ является аммиак NH3 (хладагент) и вода (абсорбент). При поглощении пары аммиака растворяются в воде, проникая (диффундируя) в её толщу. От этого процесса произошли альтернативные названия таких тепловых насосов - диффузионные или абсорбционно-диффузионные.
Для того чтобы вновь разделить хладагент (аммиак) и абсорбент (воду), отработавшую и богатую аммиаком водо-аммиачную смесь нагревают в десорбере внешним источником тепловой энергии вплоть до кипения, затем несколько охлаждают. Первой конденсируется вода, но при высокой температуре сразу после конденсации она способна удержать очень мало аммиака, поэтому основная часть аммиака остаётся в виде пара. Здесь находящиеся под давлением жидкую фракцию (воду) и газообразную (аммиак) разделяют и по отдельности охлаждают до температуры окружающей среды. Остывшая вода с малым содержанием аммиака направляется в абсорбер, а аммиак при охлаждении в конденсаторе становится жидким и поступает в испаритель. Там давление падает, и аммиак испаряется, снова охлаждая испаритель и забирая извне тепло. Затем вновь соединяют пары аммиака с водой, удаляя из испарителя излишки аммиачных паров и поддерживая там низкое давление. Обогащённый аммиаком раствор опять направляется в десорбер на разделение. В принципе, для десорбции аммиака кипятить раствор не обязательно, достаточно просто нагреть его близко к температуре кипения, и «лишний» аммиак улетучится из воды. Но кипячение позволяет провести разделение наиболее быстро и эффективно. Качество такого разделения является главным условием, определяющим разрежение в испарителе, а стало быть, эффективность работы абсорбционного агрегата, и многие ухищрения в конструкции направлены именно на это. В результате, по организации и количеству стадий рабочего цикла абсорбционно-диффузионные тепловые насосы, пожалуй, являются наиболее сложными из всех распространённых типов подобного оборудования.

«Изюминкой» принципа работы является то, что для выработки холода здесь используется нагрев рабочего тела (вплоть до его кипения). При этом вид источника нагрева непринципиален, - это может быть даже открытый огонь (пламя горелки), поэтому использование электричества необязательно. Для создания необходимой разности давлений, обуславливающей движение рабочего тела, иногда могут использоваться механические насосы (обычно в мощных установках при больших объёмах рабочего тела), а иногда, в частности в бытовых холодильниках, - элементы без подвижных частей (термосифоны).


Абсорбционно-диффузионный холодильный агрегат (АДХА) холодильника «Морозко-ЗМ».1 - теплообменник;2 - сборник раствора;3 - аккумулятор водорода;4 - абсорбер;5 - регенеративный газовый теплообменник;6 - дефлегматор («обезжиживатель»); 7 - конденсатор;8 - испаритель; 9 - генератор;10 - термосифон; 11 - регенератор;12 - трубки слабого раствора; 13 - пароотводящая трубка;14 - электронагреватель; 15 - термоизоляция.

Первые абсорбционные холодильные машины (АБХМ) на аммиачно-водяной смеси появились во второй половине XIX века. В быту из-за ядовитости аммиака они тогда большого распространения не получили, но весьма широко использовались в промышленности, обеспечивая охлаждение вплоть до –45°С. В одноступенчатых АБХМ теоретически максимальная холодопроизводительность равна количеству затраченного на нагрев тепла (реально, конечно, заметно меньше). Именно этот факт подкреплял уверенность защитников той самой формулировки второго начала термодинамики, о которой говорилось в начале этой страницы. Однако сейчас и абсорбционные тепловые насосы преодолели это ограничение. В 1950-х годах появились более эффективные двухступенчатые (два конденсатора или два абсорбера) бромистолитиевые АБХМ (хладагент - вода, абсорбент - бромид лития LiBr). Трёхступенчатые варианты АБХМ запатентованы в 1985-1993 годах. Их образцы-прототипы по эффективности превосходят двухступенчатые на 30–50% и приближаются к массовым моделям компрессионных установок.

Достоинства абсорбционных тепловых насосов

Главное достоинство абсорбционных тепловых насосов - это возможность использовать для своей работы не только дорогое электричество, но и любой источник тепла достаточной температуры и мощности - перегретый или отработанный пар, пламя газовых, бензиновых и любых других горелок - вплоть до выхлопных газов и даровой солнечной энергии.

Второе достоинство этих агрегатов, особенно ценное в бытовых применениях, - это возможность создания конструкций, не содержащих движущихся деталей, а потому практически бесшумных (в советских моделях этого типа иногда можно было услышать тихое бульканье или лёгкое шипение, но, конечно, это не идёт ни в какое сравнение с шумом работающего компрессора).

Наконец, в бытовых моделях рабочее тело (обычно это водо-аммиачная смесь с добавлением водорода или гелия) в используемых там объёмах не представляет большой опасности для окружающих даже в случае аварийной разгерметизации рабочей части (это сопровождается весьма неприятной вонью, так что не заметить сильную утечку невозможно, и помещение с аварийным агрегатом придётся покинуть и проветрить «автоматически»; сверхмалые же концентрации аммиака естественны и абсолютно безвредны). В промышленных установках объёмы аммиака велики и концентрация аммиака при утечках может быть смертельной, но в любом случае аммиак числится экологически безопасным, - считается, что в отличии от фреонов он не разрушает озоновый слой и не вызывает парниковый эффект.

Недостатки абсорбционных тепловых насосов

Главный недостаток этого типа тепловых насосов - более низкая эффективность по сравнению с компрессионными.

Второй недостаток - сложность конструкции самого агрегата и довольно высокая коррозионная нагрузка от рабочего тела, либо требующая использования дорогих и труднообрабатываемых коррозионно-стойких материалов, либо сокращающая срок службы агрегата до 5..7 лет. В результате стоимость «железа» получается заметно выше, чем у компрессионных установок той же производительности (прежде всего это касается мощных промышленных агрегатов).

В-третьих, многие конструкции весьма критичны к размещению при установке - в частности, некоторые модели бытовых холодильников требовали установки строго горизонтально, и уже при отклонении на несколько градусов отказывались работать. Использование принудительного перемещения рабочего тела с помощью помп в значительной степени снимает остроту этой проблемы, но подъём бесшумным термосифоном и слив самотёком требуют очень тщательного выравнивания агрегата.

В отличии от компрессионных машин абсорбционные не так боятся слишком низких температур - просто их эффективность снижается. Но я недаром поместил этот абзац в раздел недостатков, потому что это не значит, что они могут работать в лютую стужу - на морозе водный раствор аммиака банально замёрзнет в отличие от используемых в компрессионных машинах фреонов, температура замерзания которых обычно ниже –100°C. Правда, если лёд ничего не порвёт, то после оттаивания абсорбционный агрегат продолжит работу, даже если его всё это время не отключали из сети, - ведь механических насосов и компрессоров в нём нет, а мощность подогрева в бытовых моделях достаточно мала, чтобы кипение в районе нагревателя не стало слишком интенсивным. Впрочем, всё это уже зависит от особенностей конкретной конструкции...

Использование абсорбционных тепловых насосов

Несмотря на несколько меньшую эффективность и относительно более высокую стоимость по сравнению с компрессионными установками, применение абсорбционных тепловых машин абсолютно оправдано там, где нет электричества или где есть большие объёма бросового тепла (отработанный пар, горячие выхлопные или дымовые газы и т.п. - вплоть досолнечного нагрева). В частности, выпускаются специальные модели холодильников, работающие от газовых горелок, предназначенные для путешественников-автомобилистов и яхтсменов.

В настоящее время в Европе газовые котлы иногда заменяют абсорбционными тепловыми насосами с нагревом от газовой горелки или от солярки - они позволяют не только утилизировать теплоту сгорания топлива, но и «подкачивать» дополнительное тепло с улицы или из глубины земли!

Как показывает опыт, в быту вполне конкурентоспособны и варианты с электронагревом, прежде всего в диапазоне малых мощностей - где-то от 20 и до 100 Вт. Меньшие мощности - вотчина термоэлектрических элементов, а при бóльших пока безусловны преимущества компрессионных систем. В частности, среди советских и пост-советских марок холодильников этого типа были популярны «Морозко», «Север», «Кристалл», «Киев» с типичным объёмом холодильной камеры от 30 до 140 литров, хотя существуют и модели на 260 литров («Кристалл-12»). Кстати, оценивая потребление энергии, стоит учитывать тот факт, что компрессионные холодильники почти всегда работают в коротко-периодическом режиме, а абсорбционные обычно включаются на гораздо более длительный срок или вообще работают непрерывно. Поэтому, даже если номинальная мощность нагревателя будет гораздо меньше мощности компрессора, соотношение среднесуточного потребления энергии может быть совсем другим.

Вихревые тепловые насосы

Вихревые тепловые насосы используют для разделения теплого и холодного воздухаэффект Ранка. Суть эффекта заключается в том, что газ, тангенциально подаваемый в трубу на высокой скорости, внутри этой трубы закручивается и разделяется: из центра трубы можно отбирать охлаждённый газ, а с периферии - нагретый. Этот же эффект, хотя и в гораздо меньшей степени, действует и для жидкостей.

Достоинства вихревых тепловых насосов

Главное достоинство этого типа тепловых насосов - простота конструкции и большая производительность. Вихревая труба не содержит движущихся деталей, и это обеспечивает ей высокую надёжность и долгий срок службы. Вибрация и положение в пространстве практически не оказывают влияния на её работу.

Мощный поток воздуха хорошо предотвращает обмерзание, а эффективность вихревых труб слабо зависит от температуры входного потока. Очень важно и практическое отсутствие принципиальных температурных ограничений, связанных с переохлаждением, перегревом или замерзанием рабочего тела.

В некоторых случаях играет свою роль возможность достижения рекордно высокого температурного разделения на одной ступени: в литературе приводятся цифры охлаждения на 200° и более. Обычно одна ступень охлаждает воздух на 50..80°С.

Недостатки вихревых тепловых насосов

К сожалению, эффективность этих устройств в настоящее время заметно уступает эффективности испарительных компрессионных установок. Кроме того, для эффективной работы они требуют высокой скорости подачи рабочего тела. Максимальная эффективность отмечается при скорости входного потока, равной 40..50% от скорости звука - такой поток сам по себе создаёт немало шума, а кроме того, требует наличия производительного и мощного компрессора - устройства тоже отнюдь не тихого и довольно капризного.

Отсутствие общепризнанной теории этого явления, пригодной для практического инженерного использования, делает конструирование таких агрегатов занятием во многом эмпирическим, где результат сильно зависит от удачи: «угадал - не угадал». Более-менее надёжный результат даёт только воспроизведение уже созданных удачных образцов, а результаты попыток существенного изменения тех или иных параметров не всегда предсказуемы и иногда выглядят парадоксальными.

Использование вихревых тепловых насосов

Тем не менее, в настоящее время использование таких устройств расширяется. Они оправданы в первую очередь там, где уже есть газ под давлением, а также на различных пожаро- и взрывоопасных производствах - ведь подать в опасную зону поток воздуха под давлением зачастую гораздо безопаснее и дешевле, чем тянуть туда защищённую электропроводку и ставить электродвигатели в специальном исполнении.

Пределы эффективности тепловых насосов

Почему же тепловые насосы до сих пор не получили широкого распространения для обогрева (пожалуй, единственный относительно распространённый класс таких устройств - это кондиционеры с инвертором)? Причин этому несколько, и помимо субъективных, связанных с отсутствием традиций обогрева с помощью этой техники, есть и объективные, главные среди которых - обмерзание теплоотборника и относительно узкий диапазон температур для эффективной работы.

В вихревых (прежде всего газовых) установках проблем переохлаждения и обмерзания обычно нет. Они не используют изменение агрегатного состояния рабочего тела, а мощный поток воздуха выполняет функции системы «No Frost». Однако эффективность их намного меньше, чем у испарительных тепловых насосов.

Переохлаждение

В испарительных тепловых насосах высокая эффективность обеспечивается за счёт изменения агрегатного состояния рабочего тела - перехода из жидкости в газ и обратно. Соответственно, этот процесс возможен в относительно узком интервале температур. При слишком высоких температурах рабочее тело всегда останется газообразным, а при слишком низких - будет испаряться с большим трудом или вообще замёрзнет. В результате при выходе температуры за рамки оптимального диапазона наиболее энергоэффективный фазовый переход становится затруднённым или вовсе исключается из рабочего цикла, и КПД компрессионной установки существенно падает, а если хладагент останется постоянно жидким, то она вообще работать не будет.

Обмерзание

Отбор тепла из воздуха

Даже если температуры всех блоков теплового насоса остаются в нужных рамках, во время работы блок для отбора тепла - испаритель - всегда покрывается каплями влаги, конденсирующимися из окружающего воздуха. Но жидкая вода стекает с него сама по себе, не особо препятствуя теплообмену. Когда же температура испарителя становится слишком низкой, капли конденсата замерзают, а вновь конденсирующаяся влага сразу превращается в иней, который так и остаётся на испарителе, постепенно образуя толстую снеговую «шубу» - именно это происходит в морозилке обычного холодильника. В результате эффективность теплообмена существенно снижается, и тогда приходится останавливать работу и оттаивать испаритель. Как правило, в испарителе холодильника температура понижается на 25..50°С, а в кондиционерах в связи с их спецификой температурный перепад поменьше - 10..15°С.Зная это, становится понятно, почему большинство кондиционеров не удастся настроить на температуру ниже +13..+17°С - этот порог установлен их конструкторами во избежание обледенения испарителя, ведь режим его оттаивания обычно не предусматривается. Это же является одной из причин, по которой практически все кондиционеры с инверторным режимом не работают даже при не очень больших отрицательных температурах - лишь в самое последнее время стали появляться модели, рассчитанные на работу при морозах до–25°C. В большинстве случаев уже при –5..–10°C затраты энергии на оттаивание становятся сравнимы с количеством закачанной с улицы теплоты, и перекачка тепла с улицы оказывается неэффективной, особенно если влажность наружного воздуха близка к 100%, - тогда внешний теплоотборник покрывается льдом особенно быстро.

Отбор тепла из грунта и воды

В связи с этим в качестве незамерзающего источника «холодного тепла» для тепловых насосов в последнее время всё шире рассматривается тепло из земных глубин. При этом имеются в виду отнюдь не разогретые слои земной коры, находящиеся на многокилометровой глубине, и даже не геотермальные водные источники (хотя, если повезёт и они окажутся рядом, было бы глупо пренебречь таким подарком судьбы). Имеется в виду «обычное» тепло слоёв грунта, расположенных на глубине от 5 до 50 метров. Как известно, в средней полосе грунт на таких глубинах имеет температуру порядка +5°С, которая очень мало меняется в течении всего года. В более южных районах эта температура может достигать +10°С и выше. Таким образом, перепад температур между комфортной +25°С и грунтом вокруг теплоотборника весьма стабилен и не превышает 20°С независимо от мороза за окном (следует отметить, что обычно температура на выходе теплового насоса составляет +50..+60°С, но и перепад температур в 50°С вполне по силам для тепловых насосов, включая современные бытовые холодильники, спокойно обеспечивающие в морозилке –18°С при температуре в комнате выше +30°С).

Тем не менее, если закопать один компактный, но мощный теплообменник, вряд ли удастся достичь желаемого эффекта. По сути теплоотборник в этом случае выступает в роли испарителя морозильной камеры, и если в месте, где он размещён, нет мощного притока тепла (геотермального источника или подземной реки), он быстро заморозит окружающий грунт, на чём вся откачка тепла и закончится. Решением может быть отбор тепла не из одной точки, а равномерно с большого подземного объёма, однако стоимость строительства теплоотборника, охватывающего на немалой глубине тысячи кубометров грунта, скорее всего сделает это решение абсолютно невыгодным экономически. Менее затратный вариант - бурение нескольких скважин с интервалом в несколько метров друг от друга, как это было сделано в экспериментальном подмосковном «активном доме», но и это недёшево - каждый, кто делал у себя скважину для воды, может самостоятельно прикинуть затраты на создание геотермального поля хотя бы из десятка 30-метровых скважин. Кроме того, постоянный отбор тепла, хоть и менее сильный, чем в случае компактного теплообменника, всё равно снизит температуру грунта вокруг теплоотборников по сравнению с исходной. Это приведёт к уменьшению эффективности работы теплового насоса при его длительной эксплуатации, причём период стабилизации температуры на новом уровне может занять несколько лет, в течение которых условия извлечения тепла будут ухудшаться. Впрочем, можно попытаться частично компенсировать зимние потери тепла его усиленной закачкой на глубину в летнюю жару. Но даже не учитывая дополнительные затраты энергии на эту процедуру, польза от неё будет не слишком большой - теплоёмкость грунтового теплоаккумулятора разумных размеров достаточно ограничена, и на всю русскую зиму её явно не хватит, хотя такой запас тепла всё же лучше, чем ничего. Кроме того, здесь очень большое значение имеет уровень, объём и скорость течения грунтовых вод - обильно увлажнённый грунт с достаточно высокой скоростью течения воды не позволит сделать «запасы на зиму» - протекающая вода унесёт закачанное тепло с собой (даже мизерное перемещение грунтовых вод на 1 метр в сутки всего за неделю снесёт запасённое тепло в сторону на 7 метров, и оно окажется вне рабочей зоны теплообменника). Правда, то же течение грунтовых вод будет снижать степень остывания грунта зимой - новые порции воды принесут новое тепло, полученное ими вдали от теплообменника. Поэтому, если рядом есть глубокое озеро, большой пруд или река, никогда не промерзающие до дна, то лучше не копать грунт, а поместить относительно компактный теплообменник в водоём - в отличие от неподвижного грунта даже в непроточном пруду или озере конвекция свободной воды способна обеспечить гораздо более эффективный подвод тепла к теплоотборнику со значительного объёма водоёма. Но здесь необходимо убедиться, что теплообменник ни при каких условиях не переохладится до точки замерзания воды и не начнёт намораживать лёд, поскольку разница между конвекционным теплообменом в воде и теплопередачей ледяной шубы огромна (в то же время теплопроводность замёрзшего и незамёрзшего грунта часто отличается не так уж сильно, и попытка использовать огромную теплоту кристаллизации воды в грунтовом теплоотборе при определённых условиях может себя оправдать).

Принцип действия геотермального теплового насоса основан на сборе тепла из почвы или воды, и передаче в систему отопления здания. Для сбора тепла незамерзающая жидкость течет по трубе, расположенной в почве или водоеме возле здания, к тепловому насосу. Тепловой насос, подобно холодильнику, охлаждает жидкость (отбирает тепло), при этом жидкость охлаждается приблизительно на 5 °С. Жидкость снова течет по трубе в наружном грунте или воде, восстанавливает свою температуру, и снова поступает к тепловому насосу. Отобранное тепловым насосом тепло передается системе отопления и/или на подогрев горячей воды.

Возможно отбирать тепло у подземной воды - подземная вода с температурой около 10 °С подается из скважины к тепловому насосу, который охлаждает воду до +1...+2°С, и возвращает воду под землю. Тепловая энергия есть у любого предмета с температурой выше минус двести семьдесят три градуса Цельсия - так называемый "абсолютный ноль".

То есть тепловой насос может отобрать тепло у любого предмета - земли, водоема, льда, скалы и т.д. Если же здание, например летом, нужно охлаждать (кондиционировать), то происходит обратный процесс - тепло забирается из здания и сбрасывается в землю (водоем). Тот же тепловой насос может работать зимой на отопление, а летом на охлаждение здания. Очевидно, что тепловой насос может греть воду для горячего бытового водоснабжения, кондиционировать через фанкойлы, греть бассейн, охлаждать, например ледовый каток, подогревать крыши и дорожки от льда...
Одно оборудование может выполнить все функции по тепло-холодоснабжению здания.

Отправим материал вам на e-mail

Извлечение тепла из грунта и водных источников – не такое уж новшество. Западный мир давно использует геотермальную энергию для отопления жилья. Все актуальнее эта тема становится по мере того, как у коммунальщиков растут цены. Тепловой насос для отопления дома даёт возможность экологично, безопасно и бесплатно согреть батареи.

Тепловой насос обогревает дом природным теплом

Тепловой насос для отопления дома: принцип работы, достоинства и недостатки

Образец подобного тепловому насосу устройства есть в каждом доме – это холодильник. Он вырабатывает не только холод, но и тепло – это заметно по температуре задней стенки агрегата. Подобный принцип заложен и в тепловом насосе – он набирает термальную энергию из воды, земли и воздуха.

Принцип работы и устройство

Система работы устройства следующая:

  • вода из скважины или водоёма проходит через испаритель, где её температура падает на пять градусов;
  • после охлаждения жидкость попадает в компрессор;
  • компрессор сжимает воду, увеличивая её температуру;
  • нагретая жидкость перемещается в теплообменную камеру, где отдаёт своё тепло системе отопления;
  • остывшая вода возвращается к началу цикла.


Системы отопления на основе теплонасосных установок имеют три составные части:

  • Зонд – змеевик, расположенный в воде или земле. Он собирает тепло и передаёт его в устройство.
  • Тепловой насос – прибор, извлекающий термальную энергию.
  • Сама система отопления, включающая теплообменную камеру.

Плюсы и минусы устройства

Сначала о положительных сторонах подобного отопления:

  • Сравнительно небольшие энергозатраты. На отопление расходуется только электроэнергия, причём её потребуется гораздо меньше, чем, например, на отопление с помощью электроприборов. В тепловых насосах есть коэффициент преобразования, указывающий выход тепловой энергии по отношению к затраченной электрической. Например, если значение «ϕ» равно 5, значит на 1 киловатт в час расхода электричества придётся 5 киловатт тепловой энергии.


  • Универсальность. Эта отопительная система может устанавливаться в любой местности. Особенно это актуально для удалённых районов, где отсутствуют газовые магистрали. При невозможности подключения электроэнергии насос может работать на дизельном или бензиновом двигателе.
  • Полная автоматизация. В систему не нужно добавлять воду или следить за её работой.
  • Экологичность и безопасность. Теплонасосная установка не производит никаких отходов и газов. Устройство не может случайно перегреться.
  • Такой агрегат может не только отапливать дом зимой при температуре воздуха до минус пятнадцати градусов, но и охлаждать его летом. Такие функции есть в реверсивных моделях.

  • Длительный период эксплуатации – до полувека. Примерно раз в двадцать лет может потребоваться замена компрессора.

Есть у этой системы и свои недостатки, о которых нельзя не упомянуть:

  • Цены. Тепловой насос для отопления дома – не дешёвое удовольствие. Окупится эта система не раньше, чем через пять лет.
  • В местности, где зимняя температура опускается ниже пятнадцати градусов мороза, для функционирования устройства потребуются дополнительные источники тепла (электрические или газовые).
  • Система, забирающая тепловую энергию из земли, нарушает экосистему участка. Урон не значительный, но следует это учитывать.


Точка зрения эксперта

Андрей Старповский

Задать вопрос

«При желании можно изготовить тепловой насос для отопления дома из холодильника своими руками. Но для этого понадобятся определённые технические познания.»

Какой насос выбрать

Установки различаются по источнику тепловой энергии и способу её передачи. Существует пять основных видов:

  • Вода-воздух.
  • Грунт-вода.
  • Воздух-воздух.
  • Вода-вода.
  • Воздух-вода.

Исследование участка

Перед монтажом отопительной системы важно исследовать особенности участка. Это исследование поможет определиться, какой источник термальной энергии станет оптимальным вариантом. Проще всего, если рядом с домом есть водоём. Этот факт освободит от необходимости проводить земляные работы. Ещё одно практичное решение – использовать участок, на котором постоянно дует ветер. Если нет ни того, ни другого, придётся остановиться на земляных работах.

Система отопления может иметь два варианта монтажа:

  • с применением зондов;
  • с установкой подземного коллектора.

Насос грунт-вода и варианты установки

Геотермальные зонды обычно устанавливают на небольшом участке, площадь которого не позволяет проложить большой трубопровод. Для установки этой системы потребуется оборудование для бурения, так как глубина скважин должна быть не менее ста метров, диаметр – двадцать сантиметров. В такие скважины опускаются зонды. Количество скважин влияет на производительность отопительной системы.

Если площадь участка достаточно большая, можно обойтись без бурения и установить горизонтальную систему. Для этой цели змеевик закапывают на полутораметровую глубину. Этот вариант системы считается самым стабильным и безотказным.

Насос вода-вода: простая установка

Тепловой насос для отопления дома вода-вода подходит для участков с водоёмами. Для трубопровода можно использовать обычные полиэтиленовые трубы . Собранный коллектор перемещают к пруду и там опускают на дно. Это один из самых дешёвых вариантов монтажа, который возможно выполнить самостоятельно.

Тепловой насос воздух-воздух: цена монтажа

На участке, где постоянно присутствуют ветра, подойдёт система, использующая тепловую энергию воздуха. Монтаж в этом случае тоже не потребует особых затрат, его можно выполнить своими руками. Потребуется лишь установить насос не далее, чем за двадцать метров от дома в самом продуваемом месте.

Тепловой насос для отопления дома: цены и производители

Теплонасосные установки на российском рынке представлены продукцией фирм: Vaillant (Германия), Nibe (Швеция), Danfoss (Дания), Mitsubishi Electric (Япония), Mammoth (США), Viessmann (Германия). Не уступают им в качестве и российские производители SunDue и Henk.

Для отопления дома площадью сто квадратных метров потребуется десятикиловаттная установка.

Таблица 1. Средняя стоимость разных типов насосов мощностью 10 киловатт

Изображение Тип насоса Стоимость оборудования, руб Стоимость монтажных работ, руб
Грунт-вода
Импортные производители
От 500 000 От 80 000
Грунт-вода отечественные производители От 360 000 От 70 000
Воздух-вода
Импортные производители
От 270 000 От 50 000
Воздух-вода
Отечественные производители
От 210 000 От 40 000
Вода-вода импортные производители От 230 000 От 50 000
Вода-вода отечественные производители От 220 000 От 40 000

Цена под ключ теплового насоса в среднем составляет около 300 – 350 тысяч рублей. Самым бюджетным вариантом считается система «воздух-вода», так как она не требует осуществления дорогостоящих земляных работ.

Точка зрения эксперта

Андрей Старповский

Руководитель группы "Отопление, вентиляция и кондиционирование воздуха" ООО "ГРАСТ"

Задать вопрос

Сегодня тема отопления так называемого частного сектора крайне актуальна. Как показывает практика, там не всегда есть газопровод, поэтому люди вынуждены искать альтернативные источники тепла. Давайте в данной статье поговорим о том, что такое грунтовый геотермальный теплонасос или, как его называют в быту - тепловой насос. Принцип работы данного агрегата известен далеко не каждому, ровно как и его конструкция. С этими моментами мы и попытаемся разобраться.

Что нужно знать?

Вы можете говорить о том, что раз тепловые насосы такие эффективные, то почему так слабо распространены. Все дело заключается в высокой стоимости оборудования и монтажа. Именно по этой простой причине многие отказываются от данного решения и выбирают, скажем, электрические или угольные котлы. Тем не менее отбрасывать данный вариант не стоит по многим причинам, о чем мы обязательно скажем в данной статье. Тепловые насосы после установки становятся весьма экономичными, так как используют энергию грунта. Геотермальный насос - это 3 в 1. Он сочетает в себе не только отопительный котел и систему ГВС, но и кондиционер. Давайте поближе познакомимся с данным оборудованием и рассмотрим все его сильные и слабые стороны.

Принцип действия агрегата

Принцип работы теплового насоса для отопления заключается в использовании разности потенциалов тепловой энергии. Именно поэтому подобное оборудование может применяться в любой среде. Главное, чтобы её температура была не менее 1 градуса по Цельсию.

Мы имеем теплоноситель, который движется по трубопроводу, где, собственно, и нагревается на 2-5 градусов. После этого теплоноситель поступает в теплообменник (внутренний контур), где отдает собранную энергию. В это время во внешнем контуре есть хладагент, который имеет низкую температуру кипения. Соответственно, он превращается в газ. Поступая в компрессор, газ сжимается, в результате чего его температура становится еще выше. Дальше газ идет на конденсатор, где теряет свое тепло, отдавая его системе отопления. Хладагент приобретает жидкое состояние и поступает обратно во внешний контур.

Вкратце о видах тепловых насосов

Сегодня известно несколько популярных конструкций геотермальных насосов. Но при любом раскладе их принцип действия можно сравнивать с работой холодильной техники. Именно поэтому независимо от вида насос в летнее время может быть использован в качестве кондиционера. Так вот, тепловые насосы классифицируются по тому, откуда они могут добывать тепло:

  • Из грунта;
  • Из водоема;
  • Из воздуха.

Первый вид наиболее предпочтителен в холодных регионах. Дело в том, что температура воздуха зачастую опускается до -20 и ниже (на примере РФ), а вот глубина промерзания грунта обычно несущественная. Что касается водоемов, то они есть не везде, да и использовать их не слишком целесообразно. В любом случае, лучше выбирать грунтовый тепловой насос для отопления дома. Принцип работы агрегата мы немного рассмотрели, поэтому идем дальше.

«Грунт-вода»: как лучше разместить?

Получение тепла из грунта считается наиболее целесообразным и рациональным. Обусловлено это тем, что на глубине 5 метров практически не происходит температурных колебаний. В качестве теплоносителя используется специальная жидкость. Её принято называть рассолом. Она является полностью экологически безопасной.

Что касается метода размещения, то есть горизонтальный и вертикальный. Первый вид характерен тем, что пластиковые трубы, представляющие внешний контур, укладываются на площади горизонтально. Это весьма проблематично, так как работы по укладке должны проводиться на площади 25-50 квадратных метров. В случае с вертикальным расположением бурятся вертикальные скважины глубиной 50-150 метров. Чем глубже будут уложены зонды, тем эффективней будет работать геотермальный тепловой насос. Принцип работы мы уже рассмотрели, а сейчас поговорим еще о важных деталях.

Тепловой насос «Вода-вода»: принцип работы

Также не стоит сразу отбрасывать возможность использования кинетической энергии воды. Дело в том, что на большой глубине температура остается достаточно высокой и изменяется в небольших диапазонах, если это вообще происходит. Вы можете пойти несколькими путями и использовать:

  • Открытые водоемы, такие как реки и озера.
  • Грунтовые воды (скважина, колодец).
  • Сточные воды пром.циклов (обратное водоснабжение).

С экономической и технической точки зрения проще всего наладить работу геотермального насоса в открытом водоеме. При этом существенных конструктивных отличий между насосами «грунт-вода» и «вода-вода» нет. В последнем случае погружаемые в открытый водоем трубы снабжаются грузом. Что касается использования грунтовых вод, то конструкция и монтаж более сложные. Необходимо выделить отдельную скважину для сброса воды.

Принцип работы теплового насоса «Воздух-вода»

Такой тип насосов считается одним из наименее эффективных по целому ряду причин. Во-первых, в холодное время года температура воздушных масс существенно понижается. В конечном итоге это приводит к уменьшению мощности насоса. Он может не справиться с отоплением большого дома. Во-вторых, конструкция более сложная и менее надежная. Тем не менее расходы на монтаж и обслуживание существенно снижаются. Это обусловлено тем, что вам не нужен водоем, колодец, а также не требуется копать траншеи под трубы на дачном участке.

Размещается система на крыше здания или в другом подходящем месте. Стоит заметить, что подобная конструкция имеет один существенный плюс. Он заключается в возможности использования отработанных газов, воздуха, который покидает помещение, повторно. Этим можно компенсировать недостаточную мощность оборудования в зимний период.

Насосы «воздух-воздух» и кое-что еще

Подобные установки встречаются еще реже, нежели «Воздух-вода», на что есть целый ряд причин. Как вы уже догадались, в нашем случае в качестве теплоносителя используется воздух, который нагревается от более теплой воздушной массы из окружающей среды. Есть большое количество недостатков такой системы, начиная от низкой производительности и заканчивая высокой стоимостью.Тепловой насос "воздух-воздух", принцип работы которого вы знаете, неплох только в теплых регионах.

Тут есть и сильные стороны. Во-первых, дешевизна теплоносителя. Скорее всего, вы не столкнетесь с проблемой течи воздухопровода. Во-вторых, эффективность такого решения крайне высока в весенне-осенний период. Зимой же использовать воздушный тепловой насос, принцип работы которого мы рассмотрели, нецелесообразно.

Самодельный тепловой насос

Проведенные исследования показали, что срок окупаемости оборудования напрямую зависит от отапливаемой площади. Если речь идет о доме в 400 квадратных метров, то это примерно 2-2,5 года. А вот для тех, кто имеет жилье площадью поменьше, вполне можно использовать самодельные насосы. Может показаться, что сделать такое оборудование сложно, но на самом деле это несколько не так. Достаточно закупить необходимые комплектующие, и можно приступать к монтажу.

Первым делом приобретается компрессор. Можно взять такой, какой на кондиционере. Монтируют его аналогичным образом на стену здания. Помимо этого, нужен конденсатор. Его можно соорудить самостоятельно или же купить. Если пойти первым методом, то понадобится медный змеевик толщиной не менее 1мм, его помещают в корпус. Это может быть подходящий по габаритам бак. После монтажа бак сваривается, и делаются нужные резьбовые соединения.

Заключительная часть работ

При любом раскладе на окончательной стадии вам потребуется нанять специалиста. Именно знающий человек должен осуществлять пайку медных трубок, закачку фреона, а также первый запуск компрессора. После сборки всей конструкции её подключают к внутренней системе отопления. Наружный контур устанавливается в последнюю очередь, а его особенности зависят от типа используемого теплового насоса.

Не стоит упускать из виду такой важный момент, как замена устаревшей или поврежденной проводки в доме. Специалисты рекомендуют устанавливать счетчик мощностью не менее 40 ампер, чего должно быть вполне достаточно для эксплуатации теплового насоса. Не лишним будет отметить, что в некоторых случаях подобное оборудование не оправдывает ожидания. Это обусловлено, в частности, неточными термодинамическими расчетами. Чтобы не случилось так, что вы потратили кучу денег на отопление, а зимой пришлось поставить угольный котел, обращайтесь в проверенные организации с положительными отзывами.

Безопасность и экологичность прежде всего

Отопление с помощью описанных в данной статье насосов является одним из наиболее экологических методов. Обусловлено это по большей части сокращением выбросов в атмосферу углекислых газов, а также сбережением невосстанавливаемых энергоресурсов. Кстати, в нашем случае используются возобновляемые ресурсы, поэтому бояться, что тепло вдруг закончится, не стоит. Благодаря использованию вещества, кипящего при низких температурах, появилась возможность реализовать обратный термодинамический цикл и при меньших затратах энергии получать достаточное количество тепла в дом. Что касается пожаробезопасности, то тут и так все понятно. Нет вероятности утечки газа или мазута, взрыва, нет опасных мест для хранения горючих материалов и многое другое. В этом плане тепловые насосы очень хороши.

Заключение

Теперь вы полностью знакомы с тем, что такое и каким может быть тепловой насос (принцип работы). Своими руками подобный агрегат сделать можно, а в некоторых случаях даже нужно. В этом случае вы можете сэкономить порядка 30% средств на покупку оборудования. Но опять же монтажными работами желательно должен заниматься специалист, это же касается и проводимых расчетов.

Как ни крути, сегодня это еще достаточно дорогостоящий вид отопления с большим сроком окупаемости. В большинстве случаев куда проще провести газ или топить углем или дровами. Тем не менее для больших загородных домов это очень перспективный вид отопления. Его говорить об экономичности оборудования, то получается что на 1 кВт потраченной энергии мы получаем порядка 5-7 кВт тепловой. По охлаждению это 2-2,5 кВт на выходе, что тоже очень даже неплохо. Стоит отметить еще и бесшумность работы насоса. Вот, в принципе, и все, что можно рассказать по данной теме.

1.
2.
3.
4.
5.
6.

Такой агрегат как тепловой насос принцип работы имеет сходный с бытовыми приборами – холодильником и кондиционером. Примерно 80% своей мощности он заимствует у окружающей среды. Насос перекачивает тепло с улицы в помещение. Его работа подобна принципу функционирования холодильника, отличается только направление переноса тепловой энергии.

Например, для охлаждения бутылки с водой люди ставят ее в холодильник, затем бытовой прибор частично «забирает» у этого предмета тепло и теперь, по закону сохранения энергии должен его отдать. Но куда? Все просто, для этого в холодильнике имеется радиатор, как правило, находящийся на его задней стенке. В свою очередь радиатор, нагреваясь, отдает тепло помещению, в котором стоит. Таким образом, холодильник отапливает комнату. До какой степени она прогревается, можно почувствовать в небольших магазинах жарким летом, когда включено несколько холодильных установок.

А теперь немного фантазии. Предположим, что в холодильник постоянно подкладываются теплые предметы, и он обогревает комнату или его расположили в оконном проеме, открыли дверцу морозильной камеры наружу, при этом радиатор находился в помещении. В процессе своей работы, бытовой прибор, охлаждая воздух на улице, одновременно будет переносить тепловую энергию, которая есть снаружи, в здание. Точно такой имеет тепловой насос принцип действия.

Откуда насос берет тепло?

Функционирует тепловой насос, благодаря эксплуатации природных низкопотенциальных источников тепловой энергии, среди которых:
  • окружающий воздух;
  • водоемы (реки, озера, моря);
  • грунт и грунтовые артезианские и термальные воды.

Система отопления с тепловым насосом

Когда для обогрева используется тепловой насос - принцип работы его основан на интеграции в отопительную систему. Она состоит из двух контуров, к которым добавляется третий, представляющий собой конструкцию насоса.

Теплоноситель, забирающий на себя тепло из окружающей среды, циркулирует по внешнему контуру. Он попадает в испаритель насоса и отдает хладагенту примерно 4 -7 °C, притом, что его температура кипения равна -10 °C. В результате хладагент закипает и дальше переходит в газообразное состояние. Уже охлажденный теплоноситель во внешнем контуре направляется на следующий виток для набора температуры.

Состоит функциональный контур теплового насоса из:

  • испарителя;
  • хладагента;
  • электрического компрессора;
  • конденсатора;
  • капилляра;
  • терморегулирующего управляющего устройства.
Процесс, как работает тепловой насос, выглядит примерно так:
  • хладагент после закипания, двигаясь по трубопроводу, попадает в компрессор, работающий при помощи электроэнергии. Это устройство сжимает хладагент, находящийся в газообразном состоянии, до высокого давления, что вызывает повышение его температуры;
  • горячий газ попадает в другой теплообменник (конденсатор), в котором тепло хладагента отдается теплоносителю, циркулирующему по внутреннему контуру отопительной системы, или воздуху в помещении;
  • остывая, хладагент переходит в жидкое состояние, после чего проходит сквозь капиллярный редукционный клапан, теряя давление, и затем снова оказывается в испарителе;
  • таким образом, цикл завершился, и процесс готов повториться.

Примерный расчет теплопроизводительности

На протяжении часа через насос по внешнему коллектору проходит 2,5-3 кубометра теплоносителя, который земля в состоянии нагреть на ∆t = 5-7 °C (прочитайте также: " "). Чтобы рассчитать тепловую мощность данного контура, следует воспользоваться формулой:

Q = (T 1 - T 2) x V, где:
V – расход теплоносителя в час (м 3 /час);
T 1 - T 2 - разница температуры на входе и входе (°C) .

Виды тепловых насосов

В зависимости от вида потребляемого рассеянного тепла тепловые насосы бывают:
  • грунт-вода - для их работы в водяной отопительной системе используются закрытые грунтовые контуры или геотермальные зонды, находящиеся на глубине (подробнее: " ");
  • вода-вода - принцип работы в данном случае основывается на использовании открытых скважин для забора грунтовых вод и их сброса (прочитайте: " "). При этом внешний контур не закольцован, а система отопления в доме – водяная;
  • вода-воздух – устанавливают внешние водяные контуры и задействуют отопительные конструкции воздушного вида;
  • воздух-воздух – для их функционирования используют рассеянное тепло наружных воздушных масс плюс воздушная система отопления дома.

Преимущества тепловых насосов

  1. Экономичность и эффективность. Принцип действия тепловых насосов, изображенных на фото, основан не на производстве тепловой энергии, а на переносе ее. Таким образом, КПД теплового насоса должен быть больше единицы. Но как такое возможно? В отношении работы тепловых насосов используется величина, которая называется коэффициентом преобразования тепла или сокращенно КПТ. Характеристики агрегатов данного типа сравнивают именно по этому параметру. Физический смысл величины заключается в определении соотношения между количеством полученного тепла и затраченной на его получение энергии. Например, если коэффициент КПТ равен 4,8, это означает, что электроэнергия в 1кВт, затраченная насосом, позволяет получить 4,8 кВт тепла, причем безвозмездно от природы.
  2. Универсальное повсеместное применение. В случае отсутствия доступных для потребителей линий электропередач работу компрессора насоса обеспечивают при помощи дизельного привода. Поскольку природное тепло есть повсюду, принцип работы этого устройства позволяет использовать его повсеместно.
  3. Экологичность. Принцип работы теплового насоса основан на малом потреблении электроэнергии и отсутствии продуктов горения. Используемый агрегатом хладагент не содержит хлоруглеродов и полностью озонобезопасен.
  4. Двунаправленный режим функционирования. В отопительный период тепловой насос способен обогревать здание, а в летнее время охлаждать его. Тепло, отобранное у помещения, можно применять для обеспечения дома горячим водоснабжением, а, если имеется бассейн, подогревать в нем воду.
  5. Безопасная эксплуатация. В работе тепловых насосов отсутствуют опасные процессы – нет открытого огня, и не выделяются вредные для здоровья человека вещества. Теплоноситель не имеет высокой температуры, что делает устройство безопасным и одновременно полезным в быту.
  6. Автоматическое управление процессом обогрева помещений.

Принцип работы теплового насоса, достаточно подробное видео:

Некоторые особенности эксплуатации насосов

Чтобы обеспечить эффективную работу теплового насоса, необходимо соблюдать ряд условий:
  • помещение должно быть качественно утепленным (теплопотери не могут превышать 100 Вт/ м²);
  • тепловой насос выгодно использовать для низкотемпературных отопительных систем. Данному критерию соответствует система теплого пола, поскольку ее температура 35-40°C. КПТ во многом зависит от соотношения между температурой входного контура и выходного.

Принцип работы тепловых насосов заключается в переносе тепла, что позволяет получать коэффициент преобразования энергии величиной от 3 до 5. Другими словами каждый 1 кВт использованной электроэнергии приносит в дом 3-5 кВт тепла.