Формула для вычисления боковой поверхности пирамиды. Как вычислить площадь пирамиды: основания, боковую и полную? Связь пирамиды со сферой

Введите количество сторон, длину стороны и апофему:

Определение пирамиды

Пирамида - это многогранник, в основании которого лежит многоугольник, а грани его являются треугольниками.

Онлайн-калькулятор

Стоит остановиться на определении некоторых составляющих пирамиды.

У нее, как и у других многогранников, есть ребра . Они сходятся к одной точке, которая называется вершиной пирамиды. В ее основании может лежать произвольный многоугольник. Гранью называется геометрическая фигура, образованная одной из сторон основания и двумя ближайшими ребрами. В нашем случае это треугольник. Высотой пирамиды называется расстояние от плоскости, в которой лежит ее основание, до вершины многогранника. Для правильной пирамиды существует еще понятие апофемы - это перпендикуляр, опущенный из вершины пирамиды к её основанию.

Виды пирамид

Существуют 3 вида пирамид:

  1. Прямоугольная - та, у которой какое-либо ребро образует прямой угол с основанием.
  2. Правильная - у нее основание – правильная геометрическая фигура, а вершина самого многоугольника является проекцией центра основания.
  3. Тетраэдр - пирамида, составленная из треугольников. Причем каждый из них может быть принят за основание.

Формула площади поверхности пирамиды

Для нахождения полной площади поверхности пирамиды нужно сложить площадь боковой поверхности и площадь основания.

Самой простой является случай правильной пирамиды, поэтому нею мы и займемся. Вычислим полную площадь поверхности такой пирамиды. Площадь боковой поверхности равна:

S бок = 1 2 ⋅ l ⋅ p S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p S бок = 2 1 ​ ⋅ l ⋅ p

L l l - апофема пирамиды;
p p p - периметр основания пирамиды.

Полная площадь поверхности пирамиды:

S = S бок + S осн S=S_{\text{бок}}+S_{\text{осн}} S = S бок + S осн

S бок S_{\text{бок}} S бок - площадь боковой поверхности пирамиды;
S осн S_{\text{осн}} S осн - площадь основания пирамиды.

Пример решения задачи.

Пример

Найти полную площадь треугольной пирамиды, если её апофема равна 8 (см.), а в основании лежит равносторонний треугольник со стороной 3 (см.)

Решение

L = 8 l=8 l = 8
a = 3 a=3 a = 3

Найдем периметр основания. Так как в основании лежит равносторонний треугольник со стороной a a a , то его периметр p p p (сумма всех его сторон):

P = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9 p=a+a+a=3\cdot a=3\cdot 3=9 p = a + a + a = 3 ⋅ a = 3 ⋅ 3 = 9

Тогда боковая площадь пирамиды:

S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 8 ⋅ 9 = 36 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 8\cdot 9=36 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 8 ⋅ 9 = 3 6 (см. кв.)

Теперь найдем площадь основания пирамиды, то есть площадь треугольника. В нашем случае треугольник равносторонний и его площадь можно вычислить по формуле:

S осн = 3 ⋅ a 2 4 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4} S осн = 4 3 ​ ⋅ a 2

A a a - сторона треугольника.

Получаем:

S осн = 3 ⋅ a 2 4 = 3 ⋅ 3 2 4 ≈ 3.9 S_{\text{осн}}=\frac{\sqrt{3}\cdot a^2}{4}=\frac{\sqrt{3}\cdot 3^2}{4}\approx3.9 S осн = 4 3 ​ ⋅ a 2 = 4 3 ​ ⋅ 3 2 3 . 9 (см. кв.)

Полная площадь:

S = S бок + S осн ≈ 36 + 3.9 = 39.9 S=S_{\text{бок}}+S_{\text{осн}}\approx36+3.9=39.9 S = S бок + S осн 3 6 + 3 . 9 = 3 9 . 9 (см. кв.)

Ответ: 39.9 см. кв.

Еще один пример, немного сложнее.

Пример

Основанием пирамиды является квадрат с площадью 36 (см. кв.). Апофема многогранника в 3 раза больше стороны основания a a a . Найти полную площадь поверхности данной фигуры.

Решение

S квад = 36 S_{\text{квад}}=36 S квад = 3 6
l = 3 ⋅ a l=3\cdot a l = 3 ⋅ a

Найдем сторону основания, то есть сторону квадрата. Его площадь и длина стороны связанны:

S квад = a 2 S_{\text{квад}}=a^2 S квад = a 2
36 = a 2 36=a^2 3 6 = a 2
a = 6 a=6 a = 6

Найдем периметр основания пирамиды (то есть, периметр квадрата):

P = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 24 p=a+a+a+a=4\cdot a=4\cdot 6=24 p = a + a + a + a = 4 ⋅ a = 4 ⋅ 6 = 2 4

Найдем длину апофемы:

L = 3 ⋅ a = 3 ⋅ 6 = 18 l=3\cdot a=3\cdot 6=18 l = 3 ⋅ a = 3 ⋅ 6 = 1 8

В нашем случае:

S квад = S осн S_{\text{квад}}=S_{\text{осн}} S квад = S осн

Осталось найти только площадь боковой поверхности. По формуле:

S бок = 1 2 ⋅ l ⋅ p = 1 2 ⋅ 18 ⋅ 24 = 216 S_{\text{бок}}=\frac{1}{2}\cdot l\cdot p=\frac{1}{2}\cdot 18\cdot 24=216 S бок = 2 1 ​ ⋅ l ⋅ p = 2 1 ​ ⋅ 1 8 2 4 = 2 1 6 (см. кв.)

Полная площадь:

S = S бок + S осн = 216 + 36 = 252 S=S_{\text{бок}}+S_{\text{осн}}=216+36=252

Ответ: 252 см. кв.

Перед изучением вопросов о данной геометрической фигуре и её свойствах, следует разобраться в некоторых терминах. Когда человек слышит о пирамиде, ему представляются большущие постройки в Египте. Так выглядят самые простые из них. Но они бывают разных видов и форм, а значит и формула вычисления для геометрических фигур будет разной.

Виды фигуры

Пирамида – геометрическая фигура , обозначающая и представляющая собой несколько граней. По сути – это тот же многогранник, в основании которого лежит многоугольник, а по бокам расположены треугольники, соединяющиеся в одной точке – вершине. Фигура бывает двух основных видов:

  • правильная;
  • усечённая.

В первом случае, в основании лежит правильный многоугольник. Тут все боковые поверхности равны между собой и сама фигура порадует глаз перфекциониста.

Во втором случае, оснований два - большое в самом низу и малое между вершиной, повторяющее форму основного. Иными словами – усечённая пирамида представляет собой многогранник с сечением, образованным параллельно основанию.

Термины и обозначения

Основные термины:

  • Правильный (равносторонний) треугольник – фигура с тремя одинаковыми углами и равными сторонами. В этом случае все углы имеют 60 градусов. Фигура является простейшей из правильных многогранников. Если эта фигура лежит в основании, то такой многогранник будет называться правильной треугольной. Если в основании лежит квадрат, пирамида будет называться правильной четырёхугольной пирамидой.
  • Вершина – самая верхняя точка, где сходятся грани. Высота вершины образуется прямой линией, исходящей от вершины к основанию пирамиды.
  • Грань – одна из плоскостей многоугольника. Она может быть в виде треугольника в случае с треугольной пирамидой либо в виде трапеции для усечённой пирамиды.
  • Сечение – плоская фигура, образующаяся в результате рассечения. Не стоит путать с разрезом, так как разрез показывает и то, что находится за сечением.
  • Апофема – отрезок, проведённый из вершины пирамиды к её основанию. Он также является высотой той грани, где находится вторая точка высоты. Данное определение справедливо лишь по отношению к правильному многограннику. К примеру – если это не усечённая пирамида, то грань будет представлять собой треугольник. В данном случае высота этого треугольника и станет апофемой.

Формулы площади

Находить площадь боковой поверхности пирамиды любого типа можно несколькими способами. Если фигура не симметричная и представляет собой многоугольник с разными сторонами, то в данном случае легче вычислить общую площадь поверхности через совокупность всех поверхностей. Иными словами – надо посчитать площадь каждой грани и сложить их вместе.

В зависимости от того, какие параметры известны, могут потребоваться формулы вычисления квадрата, трапеции, произвольного четырёхугольника и т.д. Сами формулы в разных случаях тоже будут иметь отличия.

В случае с правильной фигурой находить площадь намного проще. Достаточно знать всего несколько ключевых параметров. В большинстве случаев требуются вычисления именно для таких фигур. Поэтому далее будут приведены соответствующие формулы. В противном случае пришлось бы расписать всё на несколько страниц, что только запутает и собьёт с толку.

Основная формула для вычисления площади боковой поверхности правильной пирамиды будет иметь следующий вид:

S=½ Pa (P – периметр основания, а – апофема)

Рассмотрим один из примеров. Многогранник имеет основание с отрезками A1, А2, А3, А4, А5, и все они равны 10 см. Апофема пусть будет равна 5 см. Для начала надо найти периметр. Так как все пять граней основания одинаковые, можно находить так: Р=5*10=50 см. Далее применяем основную формулу: S =½*50*5=125 см в квадрате.

Площадь боковой поверхности правильной треугольной пирамиды вычислить легче всего. Формула имеет следующий вид:

S =½* ab *3, где а – апофема, b – грань основания. Множитель тройки здесь означает количество граней основания, а первая часть – площадь боковой поверхности. Рассмотрим пример. Дана фигура с апофемой 5 см и гранью основания 8 см. Вычисляем: S =1/2*5*8*3=60 см в квадрате.

Площадь боковой поверхности усечённой пирамиды вычислять немного сложнее. Формула выглядит так: S =1/2*(p _01+ p _02)*a , где р_01 и р_02 являются периметрами оснований, а – апофема. Рассмотрим пример. Допустим, для четырёхугольной фигуры даны размеры сторон оснований 3 и 6 см, апофема равна 4 см.

Тут для начала следует найти периметры оснований: р_01 =3*4=12 см; р_02=6*4=24 см. Осталось подставить значения в основную формулу и получим: S =1/2*(12+24)*4=0,5*36*4=72 см в квадрате.

Таким образом, можно найти площадь боковой поверхности правильной пирамиды любой сложности. Следует быть внимательным и не путать эти вычисления с полной площадью всего многогранника. А если это всё же понадобится сделать – достаточно вычислить площадь самого большого основания многогранника и прибавить её к площади боковой поверхности многогранника.

Видео

Закрепить информацию о том, как найти площадь боковой поверхности разных пирамид, вам поможет это видео.

Цилиндр представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью. В статье поговорим о том, как найти площадь цилиндра и, применив формулу, решим для примера несколько задач.

У цилиндра есть три поверхности: вершина, основание, и боковая поверхность.

Вершина и основание цилиндра являются окружностями, их легко определить.

Известно, что площадь окружности равна πr 2 . Поэтому, формула площади двух окружностей (вершины и основания цилиндра) будет иметь вид πr 2 + πr 2 = 2πr 2 .

Третья, боковая поверхность цилиндра, является изогнутой стенкой цилиндра. Для того чтобы лучше представить эту поверхность попробуем преобразовать её, чтобы получить узнаваемую форму. Представьте себе, что цилиндр, это обычная консервная банка, у которой нет верхней крышки и дна. Сделаем вертикальный надрез на боковой стенке от вершины до основания банки (Шаг 1 на рисунке) и попробуем максимально раскрыть (выпрямить) полученную фигуру (Шаг 2).

После полного раскрытия полученной банки мы увидим уже знакомую фигуру (Шаг 3), это прямоугольник. Площадь прямоугольника вычислить легко. Но перед этим вернемся на мгновение к первоначальному цилиндру. Вершина исходного цилиндра является окружностью, а мы знаем, что длина окружности вычисляется по формуле: L = 2πr. На рисунке она отмечена красным цветом.

Когда боковая стенка цилиндра полностью раскрыта, мы видим, что длина окружности становится длиной полученного прямоугольника. Сторонами этого прямоугольника будут длина окружности(L = 2πr) и высота цилиндра(h). Площадь прямоугольника равна произведению его сторон – S = длина х ширина = L x h = 2πr x h = 2πrh. В результате мы получили формулу для расчета площади боковой поверхности цилиндра.

Формула площади боковой поверхности цилиндра
S бок. = 2πrh

Площадь полной поверхности цилиндра

Наконец, если мы сложим площадь всех трёх поверхностей, мы получим формулу площади полной поверхности цилиндра. Площади поверхности цилиндра равна площадь вершины цилиндра + площадь основания цилиндра + площадь боковой поверхности цилиндра или S = πr 2 + πr 2 + 2πrh = 2πr 2 + 2πrh. Иногда это выражение записывается идентичной формулой 2πr (r + h).

Формула площади полной поверхности цилиндра
S = 2πr 2 + 2πrh = 2πr(r + h)
r – радиус цилиндра, h – высота цилиндра

Примеры расчета площади поверхности цилиндра

Для понимания приведенных формул попробуем посчитать площадь поверхности цилиндра на примерах.

1. Радиус ос­но­ва­ния цилиндра равен 2, высота равна 3. Определите площадь боковой поверхности цилиндра.

Площадь полной поверхности рассчитывается по формуле: S бок. = 2πrh

S бок. = 2 * 3,14 * 2 * 34.6 . Всего получено оценок: 990.

В школьном курсе стереометрии изучают свойства разных пространственных фигур. Одной из них является пирамида. Данная статья посвящена вопросу о том, как найти у пирамиды площадь боковой поверхности. Также раскрывается вопрос определения этой площади для усеченной пирамиды.

Что такое пирамида?

Многие, услышав слово "пирамида", сразу представляют грандиозные сооружения Древнего Египта. Действительно, гробницы Хеопса и Хефрена являются правильными четырехугольными пирамидами. Тем не менее пирамидой также является тетраэдр, фигуры с пяти-, шести-, n-угольным основанием.

Вам будет интересно:

В геометрии понятие пирамиды определено четко. Под этой фигурой понимают объект в пространстве, который образуется в результате соединения некоторой точки с углами плоского n-угольника, где n - целое число. Ниже рисунок показывает четыре пирамиды с разным количеством углов в основании.

Точка, с которой соединены все вершины углов основания, не лежит в его плоскости. Она называется вершиной пирамиды. Если из нее провести к основанию перпендикуляр, то мы получим высоту. Фигура, в которой высота пересекает основание в геометрическом центре, получила название прямой. Иногда прямая пирамида имеет правильное основание, например квадрат, равносторонний треугольник и так далее. В этом случае она называется правильной.

При вычислении у пирамиды площади боковой поверхности удобно работать с правильными фигурами.

Площадь поверхности боковой фигуры

Как найти у пирамиды площадь боковой поверхности? Можно понять это, если ввести соответствующее определение и рассмотреть развертку на плоскости для этой фигуры.

Любая пирамида образована гранями, которые друг от друга отделены ребрами. Основание - это грань, образованная n-угольником. Все остальные грани представляют собой треугольники. Их n штук, и они все вместе образуют боковую поверхность фигуры.

Если вдоль бокового ребра разрезать поверхность и развернуть ее на плоскости, то получится развертка пирамиды. Для примера ниже показана развертка шестиугольной пирамиды.

Видно, что боковая поверхность образована шестью одинаковыми треугольниками.

Теперь не трудно догадаться, как у пирамиды найти площадь боковой поверхности. Для этого следует сложить площади всех треугольников. В случае n-угольной правильной пирамиды, сторона основания которой равна a, для рассматриваемой поверхности можно записать формулу:

Здесь hb - это апофема пирамиды. То есть высота треугольника, опущенная из вершины фигуры на сторону основания. Если апофема неизвестна, то ее можно рассчитать, зная параметры n-угольника и значение высоты h фигуры.

Усеченная пирамида и ее поверхность

Как можно догадаться из названия, усеченную пирамиду можно получить из обычной фигуры. Для этого нужно отсечь плоскостью, параллельной основанию, вершину. Ниже рисунок демонстрирует этот процесс для шестиугольной фигуры.

Ее боковая поверхность представляет собой сумму площадей одинаковых равнобедренных трапеций. Формула для площади боковой поверхности усеченной пирамиды (правильной) имеет вид:

Sb = hb*n*(a1 + a2)/2

Здесь hb - апофема фигуры, которая является высотой трапеции. Величины a1 и a2 - это длины оснований сторон.

Расчет боковой поверхности для треугольной пирамиды

Покажем, как найти площадь боковой поверхности пирамиды. Допустим, у нас правильная треугольная, разберемся на примере конкретной задачи. Известно, что сторона основания, представляющего собой равносторонний треугольник, равна 10 см. Высота фигуры равна 15 см.

Развертка этой пирамиды показана на рисунке. Чтобы воспользоваться формулой для Sb, необходимо сначала найти апофему hb. Рассматривая прямоугольный треугольник внутри пирамиды, построенный на сторонах hb и h, равенство можно записать следующее:

hb = √(h2+a2/12)

Подставляем данные и получаем, что hb≈15,275 см.

Теперь можно воспользоваться формулой для Sb:

Sb = n*a*hb/2 = 3*10*15,275/2 = 229,125 см2

Заметим, что основание треугольной пирамиды, как и ее боковая грань, образовано треугольником. Тем не менее этот треугольник при вычислении площади Sb не учитывается.

Типичными геометрическими задачами на плоскости и в трехмерном пространстве являются проблемы определения площадей поверхностей разных фигур. В данной статье приведем формулу площади боковой поверхности правильной пирамиды четырехугольной.

Что собой представляет пирамида?

Приведем строгое геометрическое определение пирамиды. Предположим, что имеется некоторый многоугольник с n сторонами и с n углами. Выберем произвольную точку пространства, которая не будет находиться в плоскости указанного n-угольника, и соединим ее с каждой вершиной многоугольника. Мы получим фигуру, имеющую некоторый объем, которая называется n-угольной пирамидой. Для примера покажем на рисунке ниже, как выглядит пятиугольная пирамида.

Два важных элемента любой пирамиды - это ее основание (n-угольник) и вершина. Эти элементы соединены друг с другом n треугольниками, которые в общем случае не равны друг другу. Перпендикуляр, опущенный из вершины к основанию, называется высотой фигуры. Если он пересекает основание в геометрическом центре (совпадает с центром масс многоугольника), то такую пирамиду называют прямой. Если помимо этого условия основание является правильным многоугольником, то и вся пирамида называется правильной. Рисунок ниже показывает, как выглядят правильные пирамиды с треугольным, четырехугольным, пятиугольным и шестиугольным основаниями.

Поверхность пирамиды

Прежде чем переходить к вопросу о площади боковой поверхности правильной пирамиды четырехугольной, следует подробнее остановиться на понятии самой поверхности.

Как было сказано выше и показано на рисунках, любая пирамида образована набором граней или сторон. Одна сторона является основанием, и n сторон представляют собой треугольники. Поверхность всей фигуры - это сумма площадей каждой ее стороны.

Поверхность удобно изучать на примере развертки фигуры. Развертка для правильной четырехугольной пирамиды приведена на рисунки ниже.

Видим, что площадь ее поверхности равна сумме четырех площадей одинаковых равнобедренных треугольников и площади квадрата.

Общую площадь всех треугольников, которые образуют боковые стороны фигуры, принято называть площадью боковой поверхности. Далее покажем, как ее рассчитать для четырехугольной пирамиды правильной.

Площадь боковой поверхности четырехугольной правильной пирамиды

Чтобы вычислить площадь боковой поверхности указанной фигуры, снова обратимся к приведенной выше развертке. Предположим, что нам известна сторона квадратного основания. Обозначим ее символом a. Видно, что каждый из четырех одинаковых треугольников, имеет основание длиной a. Чтобы вычислить их суммарную площадь, необходимо знать эту величину для одного треугольника. Из курса геометрии известно, что треугольника площадь S t равна произведению основания на высоту, которое следует поделить пополам. То есть:

Где h b - высота равнобедренного треугольника, проведенная к основанию a. Для пирамиды эта высота является апотемой. Теперь остается умножить полученное выражение на 4, чтобы получить площадь S b поверхности боковой для рассматриваемой пирамиды:

S b = 4*S t = 2*h b *a.

Эта формула содержит два параметра: апотему и сторону основания. Если последняя в большинстве условий задач известна, то первую приходится вычислять, зная другие величины. Приведем формулы для расчета апотемы h b для двух случаев:

  • когда известна длина бокового ребра;
  • когда известна высота пирамиды.

Если обозначить длину ребра бокового (сторона равнобедренного треугольника) символом L, тогда апотема h b определиться по формуле:

h b = √(L 2 - a 2 /4).

Это выражения является результатом применения теоремы Пифагора для треугольника боковой поверхности.

Если известна высота h пирамиды, тогда апотему h b можно рассчитать так:

h b = √(h 2 + a 2 /4).

Получить это выражение также не сложно, если рассмотреть внутри пирамиды прямоугольный треугольник, образованный катетами h и a/2 и гипотенузой h b .

Покажем, как применять эти формулы, решив две интересные задачи.

Задача с известной площадью поверхности

Известно, что площадь боковой поверхности четырехугольной равна 108 см 2 . Необходимо вычислить значение длины ее апотемы h b , если высота пирамиды равна 7 см.

Запишем формулу площади S b поверхности боковой через высоту. Имеем:

S b = 2*√(h 2 + a 2 /4) *a.

Здесь мы просто подставили соответствующую формулу апотемы в выражение для S b . Возведем обе части равенства в квадрат:

S b 2 = 4*a 2 *h 2 + a 4 .

Чтобы найти значение a, сделаем замену переменных:

t 2 + 4*h 2 *t - S b 2 = 0.

Подставляем теперь известные значения и решаем квадратное уравнение:

t 2 + 196*t - 11664 = 0.

Мы выписали только положительный корень этого уравнения. Тогда стороны основания пирамиды будет равна:

a = √t = √47,8355 ≈ 6,916 см.

Чтобы получить длину апотемы, достаточно воспользоваться формулой:

h b = √(h 2 + a 2 /4) = √(7 2 + 6,916 2 /4) ≈ 7,808 см.

Боковая поверхность пирамиды Хеопса

Определим значение боковой для самой большой египетской пирамиды. Известно, что в ее основании лежит квадрат с длиной стороны 230,363 метра. Высота сооружения изначально составляла 146,5 метра. Подставим эти цифры в соответствующую формулу для S b , получим:

S b = 2*√(h 2 + a 2 /4) *a = 2*√(146,5 2 +230,363 2 /4)*230,363 ≈ 85860 м 2 .

Найденное значение немного больше площади 17 футбольных полей.