Экологичное топливо. Самолеты на водорослях и пакеты из свеклы: зачем нам нужно биотопливо Пиролиз водорослей

Компания Sustainable Green Technologies (SGT) занимается разработками для замены топлива, использование которого приводит к выбросам в атмосферу парникового газа, на экономичный и экологически чистый процесс. Он будет объединять способы переработки отходов производства водорослей для производства масел в целях получения топлива и другой ценной продукции.

Водоросли, производство масла и технология SGT LipiTrigger™

Хотя водоросли являются высокоэффективными преобразователями солнечной энергии в возобновляемую биомассу, большинство известных ученым водорослей запасает солнечную энергию в виде сахаров, например, сахарозы или крахмала, а не в виде необходимых масел (жиров или липидов), т.е. триацилглицеридов или фосфолипидов. При наличии света, углекислого газа и некоторых микроэлементов, большинство водорослей запасает в виде жиров всего около 15-20% от своего сухого веса. Только при определенных условиях водоросли способны переключаться на процесс известный как “липидный триггер” и запасать внутри своих клеток продукты фотосинтеза в виде масел – более ценной формы, по сравнению с сахарами.

LipiTrigger ™ это запатентованный метод компании. Ученые Sustainable Green Technologies Inc нашли простой и эффективный способ заставить водоросли без нарушения роста синтезировать больше масел (с 15 процентов до более чем 50 процентов сухого веса). Если водоросли смогут синтезировать больше масел и достичь высоких темпов роста, чем культуры масличных растений, то это позволит производить больше биотоплива и приведет к снижению цен.

Почему эко-топливо?

Запасы ископаемых видов топлива, таких как уголь, нефть и природный газ, являются невозобновляемыми источниками энергии и постепенно истощаются. Использование ископаемых видов топлива в двигателях внутреннего сгорания или газовых турбинах приводит к выбрасыванию в атмосферу парниковых газов и других экологически вредных компонентов. Мир в настоящее время потребляет около 30 млрд баррелей (или 1,26 триллионов галлонов) нефти в год или 82 млн. баррелей (или 3440 миллионов литров) нефти ежедневно. Эксперты предупреждают, что в ближайшее время добыча нефти не будет поспевать за ростом мирового спроса.

Зеленые водоросли просты в содержании, быстро растут и представлены множеством видов, использующих энергию солнечного света для осуществления фотосинтеза. Фотосинтез – биологический процесс, который производит биомассу (сахара или липиды), кислород и высокоэнергитические молекулы АТФ (аденозинтрифосфорной кислоты) из углекислого газа (CO2) и воды. Всю биомассу, будь то сахара или жиры, можно превратить в биотопливо, чаще всего в биоэтанол и биодизельное топливо. Кроме того, поскольку водоросли потребляют CO2 в процессе фотосинтеза, они являются идеальным, дешевым и экологически чистым способом эффективного удаления этого газа из атмосферы.

Зеленые водоросли являются родственниками других зеленых растений, в которых также осуществляется процесс фотосинтеза. Они относятся к самым примитивным формам растительной жизни и процесс фотосинтеза в зеленых водорослях протекает также, как и в остальных растениях. Так как многие зеленые водоросли являются небольшими организмами и имеют простую клеточную структуру, они являются более эффективными преобразователями солнечного света, чем высшие растения и показывают очень быстрый рост. Кроме того, поскольку водоросли растут в водной среде они имеют эффективный доступ к основным ингредиентам для фотосинтеза – воде и углекислому газу.

Что такое водорослевые масла?

Зеленые водоросли являются метаболически универсальными и производят важные для возобновляемой биомассы соединения непосредственно из солнечного света. Они могут синтезировать целлюлозу, полимер глюкозы, как часть собственных клеточных стенок, накапливают крахмал в качестве запасного питательного вещества и, что более важно, запасают значительные количества липидов и жирных кислот в качестве накопителей энергии. Жиры, производимые водорослями, химически очень похожи на продукт масличных культур и запасаются в виде триацилглицеридов.

Что такое триацилглицериды (ТАГ)?

ТАГ в водорослях – это химическая основа будущей экономики экотоплива. По своей химической природе ТАГ (или триацилглицериды) представляют собой молекулы, состоящие из трех длинных цепочек жирных кислот, соединенных с одной молекулой глицерина. ТАГ (жиры и липиды) в присутствии простых спиртов и катализатора, могут быть преобразованы в сложные эфиры жирных кислот (биодизель) в процессе, называемом переэтерификацией. Она выполняется либо химически, с помощью щелочных гидроксидов, или биохимически, с помощью ферментов, называемых липазами. Поскольку физико-химические свойства биодизеля очень близки к нефтяному дизельному топливу, масло водорослей представляет собой очень привлекательный альтернативный источник для производства биодизеля. Другим важным преимуществом является то, что оно не конкурирует с продовольственными рынками.

Как быстро растут водоросли?

Высокая эффективность фотосинтеза у водорослей обусловлена их малыми размерами. Это приводит к увеличению производства биомассы по сравнению с сельскохозяйственными культурами, такими как пальмовое масло, рапс, соя и кукуруза. Они содержат гораздо больше масел в сухом весе, чем используемые в настоящее время сельскохозяйственные растения. У некоторых водорослей сухой вес более чем на 50% состоит из извлекаемых масел, что в два с лишним раза превосходит содержание масла в масличных пальмах.

Дорого ли выращивать водоросли?

Водоросли имеют относительно простые требования для произрастания и они хорошо себя чувствуют в бедной по минеральному составу среде. Водорослям нужна только вода, солнечный свет и углекислый газ, и значительно меньше азота, чем сельскохозяйственным растениям. Метаболически они очень универсальны. Некоторые водоросли могут расти не только в фототрофных условиях (т. е. в присутствии света и углекислого газа в качестве источника углерода), но и при гетеротрофных условиях (то есть при отсутствии света, но при наличии глюкозы и других органических молекул в качестве сырья). Гетеротрофное выращивание водорослей с использованием сахара как источника углерода, приводит к значительно большему содержанию масел в водорослях по сравнению с контролем – водорослями, выращенными в фототрофных условиях. Однако, использование глюкозы (сахаров) для гетеротрофного роста водорослей и добычи масла является дорогостоящим и конкурирует с рынком продуктов питания. Это затрудняет экономически успешное использование способа.

Какие затраты связаны с выращиванием водорослей?

Пока за солнечный свет не приходится платить и его предостаточно, 80% от общих затрат на выращивание водорослей включают в себя стоимость сырья и питательных веществ. Для того, чтобы способность водорослей производить масла стала коммерчески привлекательной, затраты на сырье и удобрения для выращивания должны быть снижены. Компания SGT разработала и запатентовала дешевый способ использования водорослями собственных продуктов фотосинтеза для достижения значительной биомассы и производства масел.

Реальная альтернатива?

В последние годы возрастающее глобальное производство биодизеля из сельскохозяйственных культур и растительного масла стало более дорогостоящим, что частично связанно с ростом цен на удобрения и транспорт. Производство масел из зеленых водорослей с использованием недорогих отходов – очень привлекательная альтернатива для биотоплива следующего поколения. Очевидным преимуществом использования масла зеленых водорослей вместо масла, полученного из продовольственных культур, является то, что оно не конкурирует с продуктами питания и не влияет на продовольственные цены.

Являются ли водорослевые фермы решением?

В 1980 году научно-исследовательские программы Департамента Энергетики и других лабораторий были сосредоточены на создании крупных ферм водорослей в самых солнечных регионах США.

Несколько ферм водорослей, расположенных в открытых мелких водоемах, испытывались в США, используя в качестве сырья для водорослей выбросы углекислого газа. Однако, кольцеобразные пруды с водорослями имели несколько недостатков.

1. Ограниченное производство биомассы из-за небольшой глубины пруда. Пруды этого типа мелкие, для того чтобы водоросли получали достаточное количество солнечного света.

2. Высокая возможность заселения прудов другими формами жизни. Открытая система прудов склонна к заселению другими формами жизни, которые, в конечном счете, начинают конкурировать с водорослями за важные питательные вещества, таким образом снижая желаемое производство биомассы.

3. Зависимость от местных источников углекислого газа для обеспечения высокого производства биомассы. Ограниченное количество подходящих источников с большими выбросами углекислого газа, в идеале – электростанций, работающих на ископаемом топливе.

4. Сложности в разведении лабораторных организмов в открытых прудах

Почему именно технология производства масла из водорослей

Компания SGT разрабатывает новые технологии для добычи масел из зеленых водорослей. Они сосредоточены вокруг запатентованных процессов, которые позволяют компании добиться высокого и устойчивого роста биомассы водорослей с высоким процентом содержания масел. Существуют четыре основные причины почему должна быть разработана технология для добычи масел из зеленых водорослей.

  1. Энергобезопасность: разнообразит источники энергии.
  2. Занятость: создание рабочих мест для “зеленых воротничков”
  3. Окружающая среда: переработка углекислого газа и защита климата
  4. Социальная ответственность: реализация устойчивого производства биотоплива из непищевых источников

Взятые. Они могут произвести в 30 раз больше энергии на единицу площади, чем большинство видов биотоплива , полученных из зерновых культур. Такое открытие может способствовать созданию новой индустрии биологического топлива, основанной на морских водорослях , не говоря уже об экономии средств на затраты для засева зерновых. Министерство энергетики США подсчитало, что...

https://www.сайт/journal/122453

Выращивания их близко к аэропортам в целях предотвращения экологических издержек. Исследователи из Cranfield заявили, что водоросли смогут производиться авиационной промышленностью на коммерческой основе через четыре года. По их словам, водоросли представляют собой наилучший вариант из всех видов биотоплива , поскольку они не конкурируют с продуктами питания за землю. Это не первый случай, когда British Airways предприняла...

https://www.сайт/journal/131705

Был получен патент на процесс производства молекул дизельного топлива в организме цианобактерии. Получением топлива из кукурузы или водорослей специалисты занимаются уже давно, но но Joule, по её словам, впервые устранила посредника - биомассу, ... секрет в цианобактериях: они распространены повсеместно и проще водорослей , поэтому ими легче манипулировать. Компания намерена уже в текущем году начать строительство первого предприятия по производству биотоплива , а на рынок продукт выйдет через пару лет...

https://www.сайт/journal/135241

Европейский аэрокосмический концерн показал миру будущее «зеленой» авиации. На Берлинском авиасалоне в воздух взмыл первый в мире самолет, заправленный биотопливом из морских водорослей . Над этим проектом и трудился ЕАДС (EADS). За основу был взят небольшой четырехместный самолет «Даймонд Ди-эй - 42» (Diamond DA-42). Как отмечают инженеры, чтобы «озеленить» ...

https://www.сайт/journal/127016

Природного. Именно по этой причине уже не один год ученые искали способ наладить производство биотоплива , химически не отличающегося от получаемого на нефтеперерабатывающих заводах, однако первыми успеха достигла группа... исследователей из инновационной компании LS9 в Сан-Франциско, США, занимающейся разработкой новых видов биотоплива . В своей работе ученые использовали генетический материал микроорганизмов - так называемых цианобактерий, некоторые из которых способны...

https://www.сайт/journal/128377

Что арбузный сок является эффективным источником химических соединений, которые могут использоваться для производства биотоплива , например, этанола. При этом ученые отмечают, что арбузный сок можно использовать сразу или... его получение было экономически выгодным. В настоящее время ученые ищут разнообразные ресурсы для получения биотоплива . Так, недавно в Гренландии решили делать биотопливо из полярных акул Somniosus microcephalus, которые регулярно попадаются в сети местных рыбаков. Популяция...

https://www.сайт/journal/120029

Замены топлив, получаемых с помощью нефтепереработки. Уже давно идут разговоры о том, что биотопливо сможет существенно понизить нашу зависимость от нефти, однако традиционные кандидаты в компоненты топливных смесей биологического... недостатку продовольствия. В свете описанных выше обстоятельств многие исследователи давно пытаются разработать методы получения «биотоплива второго поколения», сырьем для которого могут быть непригодные для пищи целлюлозосодержащие компоненты растений, часто...

Любому водителю далеко не все равно, что льется в бак его машины. Во многих случаях именно некачественное топливо приводит к серьезным проблемам с автомобилем. Поэтому вполне понятен интерес ко всему, что связано с бензином, соляркой и прочими видами топлива. А как следствие этого – к альтернативным видам горючего для ДВС, одним из которых является биотопливо.

Что это такое, и из чего делают биотопливо?

Все ресурсы, которые есть на Земле, условно можно поделить на возобновляемые и не возобновляемые. Уголь, нефть, металл, в природе не восстанавливаются, а вот дрова, кукуруза, навоз могут быть получены вновь и вновь. Все, что растет или является отходами переработки такого сырья – источники возобновляемой энергии. Вот из этих биоресурсов люди ещё с давних пор получали нужное для своего существования, в том числе и биотопливо.

Биотопливо первого поколения

Однако и между собой отдельные его виды различаются, скажем так, по значимости источников сырья для биотоплива. Связано это с используемыми ресурсами. Например, чтобы получить биотопливо из рапса, его надо сначала вырастить, а уж потом отправить семена на переработку. Для выращивания такой культуры занимается посевная площадь, и фактически речь идет о выборе приоритетов – а чего мы хотим иметь, продукты питания или биотопливо. Кроме того, получение биомассы, идущей на производство биотоплива, связано с использованием специализированных удобрений, что наносит определённый вред земле и окружающей природе. Такой вид сырья относится к первому поколению.

Второе поколение

Однако биотопливо можно получить из иных источников, таких как отходы других производств. Его делают, например, из опилок, а также остатков стеблей, шелухи, остающейся после обработки зерновых, и многого другого. Все это дает так называемое биотопливо второго поколения, для которого не требуется специально выращивать сырье, а сделать его можно из отходов других производств.

Третье поколение

Следующим этапом развития стало биотопливо третьего поколения. Его источником являются водоросли. Существуют определённые их сорта, содержащие значительное количество растительных жиров, из которых можно сделать тот же самый биодизель. Конечно, чтобы получить биотопливо из водорослей, их надо выращивать, но для этого совсем не требуется занимать посевные площади. Водоросли могут расти в прудах, биореакторах, на морском дне или в специально устроенных заливах, т.е. занимают те участки земной поверхности и морского дна, которые не задействованы в производстве продуктов питания. Так что, биотопливо третьего поколения, хотя и находится еще в стадии отработки технологии производства, надо признать наиболее перспективным.

Двигатель на биотопливе – немного истории и его варианты

Это для нас сегодня бензин и солярка являются единственными видами топлива, на которых работает всем нам привычный двигатель. Но надо отметить, что далеко не всегда было именно так. На заре своего существования, для ДВС как топливо применялось всё, что только подходило – масло, спирт, эфир, газ, дрова и т.д.

Поэтому должно быть достаточно интересно вспомнить о биотопливе, которое использовалось раньше. В этом случае стоит особо отметить:

  • спирт в различных его видах;
  • масло;

Биотопливо из опилок или спирт как он есть

Биотопливо подобного типа наиболее известно, и по-видимому, это один из первых вариантов горючего, которое потреблял двигатель. Среди различных его видов стоит отметить биоэтанол, биометанол и биобутанол.

1.Этанол или обычный спирт достаточно хорошо известен в истории автомобилестроения. Достаточно сказать, что в свое время Генри Форд организовывал строительство заводов по производству спирта, предназначенного на роль топлива. Сейчас его изготовление широко развернуто в Бразилии, по оценкам экспертов, сорок процентов автотранспорта этой страны используют этанол в чистом виде, шестьдесят процентов – в смеси с бензином.

Из чего сегодня делают этанол? Чаще всего сырьем служит сельскохозяйственная продукция, в той же Бразилии, чтобы сделать биоэтанол, применяют сахарный тростник, солому, древесные отходы и другое аналогичное сырье. Из опилок на гидролизном производстве так же можно получить этанол. Чем же он так хорош, что это вызывает его всеобщее использование?
Здесь надо обратить внимание на:

  1. детонационную стойкость;
  2. теплоту сгорания;
  3. теплоту испарения.

Из чего бы ни пришлось сделать подобное биотопливо, из опилок или тростника, ему свойственны антидетонационные свойства, они выше, чем у обычного бензина. Благодаря этому можно повысить мощность, двигатель, работающий на этаноле, допускает увеличение степени сжатия. Теплота сгорания спиртовоздушной смеси незначительно отличается от характеристик традиционной топливовоздушной смеси, а за счет хорошей испаряемости спирта обеспечивается лучшее наполнение цилиндров и полное ее сгорание.

Из недостатков этанола стоит отметить его повышенную агрессивность по отношению к некоторым цветным металлам, пластмассам и резине, вследствие чего может возникнуть необходимость частично дорабатывать двигатель. Однако самым главным минусом такого горючего является его гигроскопичность, оно сильно поглощает воду, а затем смесь расслаивается в баке, в результате чего он окажется заполнен в основном водой. Одним из методов борьбы с этим является использование смесей спирта и бензина, до десяти процентов этанола, добавленного в обычный бензин, только улучшают его характеристики.

Дополнительно стоит отметить, что производство биоэтанола как топлива, хоть из тех же самых опилок, отличается от производства питьевого спирта. Топливный спирт не пригоден для питья, он имеет явно выраженный сивушный запах и повышенное содержание метанола.

2.Метанол, или метиловый спирт, при всех своих достоинствах ядовит. Хотя его можно сделать из отходов, из тех же самых опилок, обычно биометанол не используют в качестве горючего.
3.Биобутанол. Как биотопливо для автомобилей подходит даже в большей степени, чем биоэтанол. Может изготавливаться из биомассы, опилок, и при этом ничем не отличаться от бутанола, полученного по традиционной технологии.

Среди его достоинств необходимо отметить:

  • большую энергетическую ценность;
  • меньшую агрессивность;
  • возможность смешиваться с бензином;
  • возможность прямой и полной замены бензина без переделки автомобиля.

Рассматривая спирт как замену бензину, стоит отметить, что плюсы и минусы биотоплива подобного типа достаточно очевидны, и все недостатки при необходимости могут быть успешно устранены. Однако в настоящее время такое биотопливо чаще всего применяется в смеси с обычным бензином, хотя технологии его получения, например из опилок, позволяют полностью реализовывать используемую биомассу и исключить нефть из употребления.

Биодизель, или как сделать биотопливо

Это другой, не менее известный вид горючего. Он заменяет солярку, а не бензин. Производят его из растительного масла. Сырье в различных районах земного шара может быть разное: рапсовое, пальмовое, кокосовое, соевое масло, водоросли и т.д. Биотопливо подобного типа изготавливается достаточно просто, вплоть до того, что существуют самодельные установки, позволяющие производить биотопливо в домашних условиях.

Технология его получения такова – масло смешивается в определенных пропорциях со спиртом и щелочью, в результате образуется биодизель и высвобождается глицерин, который может использоваться для каких-то других целей. Так что при наличии источников растительного масла, в том числе и его остатков после кулинарной обработки пищи, вполне возможно сделать биотопливо своими руками.

Достоинством биодизеля является отсутствие серы в составе выхлопных газов, и как следствие этого то, что такое биотопливо не теряет смазочных свойств, благодаря чему двигатель может служить гораздо дольше. Надо отметить, что вредного воздействия от такого топлива на окружающую природу нет. К недостаткам биодизеля стоит отнести необходимость его подогрева в холодное время года и то, что он не хранится более трех месяцев.

Наиболее оптимальным признано его использование в смеси с обычной соляркой, выпускаются несколько разновидностей такого топлива, обозначаемых буквой В, а цифры рядом говорят о содержании биодизеля в составе топлива. Например, В5 означает содержание в нем пяти процентов биодизеля и девяноста пяти процентов солярки.

Газ как вид автомобильного топлива

Существует и биотопливо в виде газа. Источником его является биогаз, получаемый как результат анаэробного (без доступа воздуха, метанового) брожения навоза. Однако рассматривать его как достаточно массовый вид горючего для двигателей автомобиля было бы слишком оптимистично.

Хотя, как и обычный природный газ или пропан-бутан, биогаз может использоваться как топливо, но это скорее вариант для стационарных двигателей, установленных в местах, где много отходов животноводства и сельского хозяйства.

Непривычные, экзотические и забытые виды биотоплива

Здесь стоит коснуться древесины, которая может выступать как биотопливо. В первую очередь надо упомянуть скипидарно-спиртовую смесь, которая ещё в 1826 году использовалась в роли топлива. А ведь скипидар получают при пиролизе древесины. Есть отдельные упоминания, что при так называемом «быстром» высокотемпературном пиролизе сконденсирована жидкость, по своим характеристикам алогичная нефти.

Стоит вспомнить и прямое применение древесины как горючего для моторов. При сгорании древесины образуется окись углерода, которая и служит в качестве топлива. Во время Второй Мировой, Германией достаточно широко использовались машины с такими моторами, в том числе и легковые. В Советском Союзе так же были созданы газогенераторные автомобили, ЗИС 21, ЗИС 13, а также ГАЗ 42.

Работали они на обычных дровяных чурочках. Правда, при замене бензина на газ мощность двигателя падала, скорость движения и грузоподъемность тоже, а одной заправки газогенераторной установки хватало на девяносто километров пробега, но в условиях военного времени при дефиците других видов топлива и в удаленных местах такие автомобили успешно работали. И даже в Москве в военное время ходили автобусы, оснащенные газогенераторными установками.

Несмотря на всеобщее распространение бензина и солярки в качестве топлива для ДВС, постоянно идут поиски альтернативных источников получения горючего. И уже существует несколько самых разных видов биотоплива, способного обеспечить работу ДВС в любых условиях.

Экология потребления.Наука и техника:Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли относятся к числу наиболее быстрорастущих живых организмов, что не могло не вызвать интереса к их использованию, как в пищевых, так и непосредственно энергетических целях - в качестве биотоплива. Активные исследования и культивирование водорослей идут начиная с 1960-х годов как в мире, так и в России. Статья рассказывает о реальности и перспективах пищевого и энергетического использования водорослей, экономических и экологических аспектах производства водорослевого биотоплива.

Водоросли в системе живых организмов

Начиная разговор о водорослях и их ценности для энергетики, нельзя не упомянуть, что вся энергия на Земле, за исключением приливной и геотермальной, является прямой или трансформированной энергией солнечных лучей.

Нагревание Солнцем поверхности суши приводит к движению воздуха, что создаёт ветряную энергию. В свою очередь, ветер на поверхности океана создаёт волновую энергию. Нагревание Солнцем водной поверхности ведёт к испарению воды и создаёт круговорот воды в природе, без которого не было бы энергии движущейся воды.

Наконец, без Солнца невозможны жизнь, прирост биомассы и биоэнергия. Более того, нефть, газ, уголь, торф - всё это именно биомасса, в различной степени трансформированная, и тоже производная от солнечной энергии.

Что касается водорослей, то эта группа живых организмов создаёт, без преувеличения, фундамент жизни на Земле, непосредственно используя солнечную энергию для роста.

Водоросли (лат. Algae) в обиходном понимании - это растения, связанные с водной средой обитания, что, однако, не всегда так. Водоросли - весьма неоднородная совокупность. Не все водоросли живут только в воде, равно как и не все водные растения относят к водорослям.

Живые организмы классифицируются различными способами. Принятая в настоящее время классификация включает два крупнейших подразделения (таксона) или две империи живых организмов:

1. Вирусы - доклеточные организмы.

2. Клеточные организмы. Клеточные организмы разбиваются на два основных таксона менее высокого порядка (надцарства или домена):

1. Прокариоты - организмы без выраженного ограниченного мембраной клеточного ядра.

2. Эукариоты - организмы с клеточным ядром.

Прокариоты включают в себя два царства организмов - археи или архебактерии и бактерии или эубактерии. Эукариоты - более обширная группа живых организмов, включающая уже известные царства грибов, растений и животных.

Организмы, объединяемые понятием «водоросли», находятся почти на всех ступенях таксономической лестницы клеточных организмов - от бактерий до растений (табл. 1) - и включают две основные группы: прокариотические водоросли - царство в домене прокариот, включающее подцарства (по другой классификации - отделы) сине-зелёных и прохлорофитовых водорослей; настоящие водоросли - подцарство в царстве растений, включающее ряд отделов.

Интересно, что таксономическое положение прокариотических сине-зелёных водорослей остаётся дискуссионным вопросом. Микробиологи Роже Стениер и Корнелис Ван Ниль, сформулировавшие теорию деления живых организмов на два глобальных домена - прокариоты и эукариоты, предложили считать термины «прокариот» и «бактерия» эквивалентными . С этого момента синезелёные водоросли классифицируются двояко - как бактерии (цианобактерии) и как растения, будучи фотосинтезирующими организмами. Кроме того, все клеточные живые организмы можно разбить на одноклеточные (простейшие, низшие, протисты) и многоклеточные (высшие) и выстроить классификацию на этой основе, выделяя простейших в отдельное царство. Среди водорослей есть и одноклеточные, и многоклеточные, а также колониальные организмы, образующие систему взаимосвязанных клеток.

Размеры водорослей варьируются в широком диапазоне - от 0,5–1 мкм (10–6 м) у ряда цианобактерий до десятков метров у некоторых растительных форм водорослей. Водоросли живут как в морских, так и в пресных водах, а также в почве.

Общим свойством зелёных растений и водорослей, в том числе прокариотических, является способность к фотосинтезу или преобразованию электромагнитной энергии солнечных лучей в энергию химических связей органических веществ, осуществляемому на свету благодаря наличию фотосинтезирующих пигментов - хлорофиллу у растений, бактериохлорофилла и бактериородопсина у прокариот.

Реакция фотосинтеза - трансформация углекислого газа и воды в глюкозу и кислород - выглядит так:

Для зелёных растений и водорослей фотосинтез является источником питания и роста. В свою очередь, именно фотосинтезирующим организмам мы обязаны появлением и сохранением пригодной для дыхания атмосферы.

Фотосинтезирующие организмы принадлежат разряду автотрофных, использующих для питания непосредственно неорганическое вещество, преобразуемое ими в органическое. Остальные организмы, в том числе животные и человек, - гетеротрофные, неспособные синтезировать органическое вещество из неорганического. Для них, в свою очередь, автотрофы создают необходимую кормовую базу и являются источником физического существования. Таким образом, водоросли относятся к организмам, с одной стороны, обязанным своим существованием непосредственно Солнцу, с другой - являющимся основой всей остальной органической жизни на Земле.

В связи с этим необходимо рассмотреть ключевые количественные показатели - объём и прирост биомассы растений и водорослей. Биомасса Земли в целом оценивается в 1,3 трлн тонн, из которых на фитомассу (растения) приходится более 1,2 трлн тонн, или более 95 % всей земной биомассы (табл. 2).

Отметим, что если в категориях биомассы рассматривать человека и население Земли, то она при населении около 7 млрд человек составит величину порядка 300 млн тонн - примерно 1/3000 или 0,03 % от всей земной биомассы и около 1 % от всей зоомассы.

При этом ежегодный прирост биомассы составляет 17 % от общей её величины или около 220 млрд тонн, в том числе океанической биомассы - более 87 млрд тонн.

Наиболее высокие скорости размножения и, соответственно, прироста биомассы характерны для мельчайших организмов, к числу которых относится и большая часть водорослей. В частности, только биомасса фитопланктона (плавучих морских водорослей) в Мировом океане оценивается (в сыром весе) в 1,5 млрд тонн, а его годовой прирост - в 550 млрд тонн. Иными словами, за год масса водорослей способна вырасти в 350 раз. По некоторым оценкам, на водоросли приходится 2/3 всей биомассы Земли. Точные же подсчёты в данном случае вряд ли возможны.

С наибольшей скоростью размножаются мельчайшие одноклеточные водоросли или микроводоросли - промежутки времени между делениями клеток в благоприятных условиях могут сокращаться до 20 минут и даже меньше. В этом случае всего за сутки одна клетка теоретически может дать примерно 5 × 1021 потомков. При массе одной клетки около 665 фемтограмм (6,65 × 10–16 кг или 6,65 × 10–13 г) их общая масса в течение суток превысит 100 тонн, а величина, равная всей нынешней биомассе Земли, будет достигнута ещё 12 часов спустя. Даже в реальных, а не идеальных условиях высокая скорость размножения водорослей, покрывающих поверхности водоёмов, хорошо известна, а при выращивании в пруду микроводоросль спирулина (Spirulina), как показывает практика, удваивает свою биомассу каждые двапять дней.

Водоросли как пища и как топливо

Благодаря столь огромному потенциалу размножения - при этом за счёт почти исключительно солнечной энергии и воды, без потребления органических веществ! - микроводоросли ещё несколько десятилетий назад стали объектом пристального внимания и исследований возможности использования в качестве пищевого и энергетического продукта.

Перспектива культивирования водорослей с ежегодным сбором десятков и сотен тонн биомассы с 1 га водной поверхности - в разы и даже на порядки больше, чем урожайность любой известной сельскохозяйственной культуры, и без существенных затрат - не могла не выглядеть крайне заманчивой.

Первоначальным было пищевое использование водорослей, имеющее давнюю историю. В частности, известно, что ацтеки, инки, а также народы Центральной и Восточной Африки, живущие в районах озера Чад и Великой рифтовой долины, употребляли в пищу лепёшки из высушенной спирулины.

В связи с этим, начиная с 1960-х годов в мире появляется интерес к водорослям (большей частью, к спирулине), прежде всего как пище - и для животных, и для человека. Был также обнаружен ряд полезных свойств водорослей, связанных с укреплением иммунитета, профилактикой и лечением ряда заболеваний, повышением продуктивности домашнего скота и сельскохозяйственных культур.

Во второй половине 1970-х годов спирулина в виде порошка или капсул появилась на мировых продовольственных рынках, где она презентовалась в качестве нового естественного продукта - энергетической натуральной пищевой добавки с высоким содержанием белка, то есть «пищи будущего».

В США предприятия по выращиванию микроводорослей в искусственных прудах, работающие в экспериментальном режиме, были созданы в 1977 году. Первые пруды появились в пустынной местности в графстве Имперская долина (Imperial Valley) на юго-востоке штата Калифорния. Условия там благоприятны благодаря сочетанию тёплой и солнечной погоды с возможностью подачи воды из реки Колорадо.

Параллельно выращиванием водорослей занялась Япония, далее в процесс включились предприятия в Индии, Китае, Таиланде, Тайване и Мексике.

В течение 1980-х годов и первой половины 1990-х годов производство микроводорослей в мире выросло до 1000 тонн. К концу 2000-х годов мировые объёмы производства микроводорослей, включая спирулину, хлореллу (chlorella), дуналиеллу (dunaliella), хематококкус (haematoccocus), достигли 10 тыс. тонн в сухом весе.

Почти в это же время, в 1980–1990-е годы, в СССР и России начали исследование и культивирование спирулины в пищевых целях, для использования в качестве биодобавок, как в пищу человеку, так и в корм для скота и птицы.

В этих работах активное участие принимали также и сотрудники Научно-исследовательской лаборатории возобновляемых источников энергии (НИЛВИЭ) географического факультета МГУ имени М. В. Ломоносова. Был установлен положительный эффект использования спирулины, в частности, в качестве пищевых добавок для птицы. В настоящее время в России существуют отдельные небольшие производства спирулины.

Что касается возможностей непосредственно энергетического использования водорослей - для получения биотоплива, то активные исследования в этом направлении начались также в 1960–1970-е годы. Лидерами в этих изысканиях стали, в частности, Французский институт нефти (Institut francais du petrole, IFP) и Национальная лаборатория возобновляемой энергии (National Renewable Energy Laboratory, NREL) Министерства энергетики США (Department of Energy, DoE).

NREL в 1978 году начала программу исследования возможностей получения топлива из микроводорослей Aquatic Species Program (буквально - Программа водных видов или водной флоры). Она была свёрнута к 1996 году, когда обнаружилось, что биотопливо из водорослей будет слишком дорогим по сравнению с ископаемыми углеводородами, однако в 2010 году было объявлено о возобновлении исследований в связи с нестабильностью цен на нефть и ростом требований к энергетической безопасности, экологической чистоте и снижению эмиссии парниковых газов.

В последние несколько лет биотопливо из водорослей получают и используют в экспериментальном режиме.

Параллельно исследования в этом направлении проходили в СССР, в том числе в НИЛВИЭ. В частности, в 1989–2002 годах лаборатория проводила исследования биопродуктивности и возможностей использования микроводорослей в качестве источника энергии, для получения биогаза и жидкого биотоплива, на базе экспериментального полигона Морского гидрофизического института АН УССР на южном берегу Крыму у посёлка Кацивели. Сотрудниками лаборатории была разработана и сконструирована система «Биосоляр», предназначенная для выращивания микроводорослей - фотосинтезирующие блоки или биогенераторы, с размещением в море и на суше, общей площадью несколько сотен квадратных метров.

В качестве объекта эксперимента была выбрана микроводоросль спирулина платенсис (Spirulina platensis), также называемая артоспира (Arthospira platensis). Одной из особенностей эксперимента была постепенная адаптация вида (в естественных условиях спирулина живёт в пресноводных субтропических и тропических водоёмах) к морской воде Чёрного моря. Опыты показали достаточно высокую продуктивность - годовой выход биомассы с каждого блока водорослевой плантации площадью 70 м2 достигал одной тонны. Экстраполируя - это более 140 тонн с 1 га, хотя достижение такого результата на больших площадях в российских условиях - отдельная задача.

Кроме того, исходное сырьё для получения биотоплива - липиды (жиры), содержание которых в разных видах различно. Спирулина обладает высокой долей белка - около 60 % сухой массы, что в числе прочего делает её ценным пищевым продуктом. В то же время содержание липидов - всего 7 %. Для сравнения, в семенах рапса и подсолнечника на липиды приходится 30–60 % массы, в семенах сои и кукурузы - 15–25 % и выше, в плодах масличной пальмы - 45–70 %. Именно эти культуры в настоящее время используются в качестве основного сырья для производства биотоплива. Поэтому идёт работа с микроводорослями, имеющими более высокое содержание липидов, пока носящая и в нашей стране (включая НИЛВИЭ), и в мире главным образом экспериментальный характер.

Водоросли как источник энергии – преимущества и недостатки

Итак, микроводоросли очень высокопродуктивны. Урожай с одного гектара теоретически может ежемесячно достигать тонн и даже десятков тонн в сухом весе, что в разы и даже на порядки выше, чем у традиционных сельскохозяйственных культур. При этом содержание липидов у ряда видов, таких как ботриококкус брауни (Botryococcus braunii), дуналиелла (Dunaliella), наннохлорис (Nannochloris), стихококкус (Stichococcus) в оптимальных условиях может достигать 80 %. Таким образом, теоретически возможный выход биотоплива в десятки и даже сотни раз выше, чем у используемых в настоящее время масличных культур (табл. 3).

При этом можно избежать конфликта с продовольственно-ориентированным использованием сельскохозяйственных земель. Плантации микроводорослей могут располагаться в естественных и искусственных водоёмах, на неудобных и неиспользуемых землях и морских акваториях, при этом занимая существенно меньшие площади.

Наконец, выращивание традиционных сельскохозяйственных культур на суше сопряжено с большим объёмом выбросов парниковых газов и других загрязняющих веществ. На фоне этого культивирование водорослей выглядит экологически абсолютно безопасным, более того, увеличивающим поглощение углекислого газа и выделение кислорода в атмосферу, что создаёт двойной положительный эффект - получение пищи и топлива, сопровождающееся не загрязнением, а с очищением среды. Проблема, как обычно, состоит в том, что реальные условия, как правило, далеки от оптимальных и теоретически возможных.

В рамках упоминавшейся выше программы ASP в США микроводоросли с большим содержанием липидов культивировались в открытых прудах в штате НьюМексико (юго-запад страны). Средняя продуктивность составляла 20 г/м2 в сутки (что соответствует 73 тонн с одного гектара в год), а в отдельные периоды - до 70 г/м2 в сутки.

Тем не менее, выяснилось, что невозможно в течение длительного времени поддерживать монокультуру микроводорослей в открытой системе, где неизбежно присутствуют и другие организмы. Кроме того, высокая продуктивность водорослей возможна при достаточно большой подкормке азотом, в отсутствие его она падает. В данном случае видно сходство с традиционными сельхозкультурами, также требующими азотных удобрений. В то же время при отсутствии азота содержание жиров в клетках водорослей выше. Итак, задача одновременного роста биопродуктивности и содержания липидов, обусловливающих энергоэффективность культуры, оказывается неразрешимой, и требуется поиск оптимального соотношения того и другого.

Японские исследователи из Научноисследовательского института инновационных технологий Земли (Research Institute of Innovative Technology for the Earth (RITE)), работавшие над этой же задачей в 1991–1999 годы, пришли к сходным результатам.

В 1997–2001 годах крупный исследовательский проект в этом же направлении осуществлялся на Гавайских островах, с микроводорослью хематококкус плювиалис (Haematococcus pluvialis), которую на первой стадии выращивали в закрытых фотобиореакторах, на второй - помещали в условия открытых водоёмов. Средняя продуктивность биомассы культивируемой водоросли составила 38 тонн с 1 га, максимальная превышала 90 тонн, выход биотоплива, соответственно, был 11,4–27,5 тонн с 1 га, что в несколько раз выше, чем у самых продуктивных масличных культур на суше.

В то же время, при выращивании в открытых условиях и биопродуктивность, и содержание липидов оказываются существенно ниже, а выращивание в закрытом биореакторе ведёт к существенно более высоким затратам.

В переводе на энергетический эквивалент получается, что для получения 1 л биодизеля из микроводорослей требуются энергозатраты, эквивалентные 0,56– 0,81 л топлива (в среднем около 0,7 л), включающие электроэнергию, питательные вещества и другое. В данном случае, помимо экономической составляющей, присутствует и экологическая - поскольку энергия, идущая на выращивание водорослей, добывается уже из невозобновляемых источников и экологически безопасной не является, то есть экологический эффект производства биодизеля в значительной степени обесценивается. Кроме того, существует отрицательный экологический эффект, связанный с азотной подкормкой и водопотреблением плантаций водорослей, то есть такой же, как и в традиционном сельскохозяйственном производстве. Кроме того, речь идёт о затратах без учёта инвестиций, оплаты труда, других издержек, связанных, в частности, с транспортировкой топлива.

Расчёты затрат на получение биодизеля из микроводорослей дают существенно различающиеся результаты, в очень высокой степени зависящие от вида и способа производства водоросли, природных условий и других факторов. В частности, по расчётам участников программы ASP, стоимость 1 л «водорослевого» биодизеля составила 26–86 центов ($ 39–127 за баррель), в гавайском проекте - около 40 центов ($ 56 за баррель), а исследователи из Британской Колумбии (Канада) дают существенно более высокие цифры - от $ 2,5 до $ 7 за 1 л.

По нашим расчётам, инвестиционные затраты на обустройство 1 га водорослевых плантаций в открытых условиях, включая монтаж культиваторов, оборудование для приготовления питания, перемешивания, сушки и фильтрации биомассы и другое, составят около $ 50 тыс.

Операционные затраты в крайне высокой степени зависят от местных условий, начиная от климата и заканчивая уровнем оплаты труда. Их можно оценить в $ 50–100 тыс. в год, но в условиях России они могут быть в несколько раз выше, в частности, из-за существенно большего по сравнению с субтропиками и тропиками расхода электроэнергии и короткого вегетационного периода при выращивании в открытых условиях.

Это вполне приемлемые условия при выращивании водорослей в качестве пищевых и лекарственных добавок, но как источник топлива они оказываются слишком дорогими.

При данных затратах, даже в случае сбора с 1 га 30 тонн биомассы ежегодно, каждая тонна будет обходиться в $ 1600– 3200 ($ 1,6–3,2 за 1 кг), даже без учёта первоначальных инвестиций и затрат на получение собственно биотоплива. Это близко к цифрам, приводимым канадскими исследователями.

Перспективы водорослевой энергетики

Интерес к водорослям в качестве источника биотоплива закономерен при ценах нефти в $ 100 за баррель и выше, как было во второй половине 2000-х годов. В настоящее время ситуация далеко не столь благоприятна, и вряд ли можно предсказать, изменится ли она в лучшую для возобновляемой энергетики сторону в обозримом будущем.

В настоящее время идёт и будет продолжаться поиск путей снижения затрат на производство биоэнергии из водорослей. Помимо прочего, он включает поиск, отбор и выведение культур водорослей с повышенным содержанием липидов, более продуктивных и жизнестойких.

В качестве же пищевого продукта (что тоже можно считать источником энергии) водоросли уже используются и имеют очевидные перспективы. Вероятно, как и в случае с торфом, в дальнейшем целесообразно комплексное использование выращиваемых водорослей с созданием целого спектра пищевых, лекарственных, энергетических продуктов на выходе. Для России это также могло бы стать одним из направлений среднеи долгосрочного инновационного роста и создания высокотехнологичной экономики на отечественной интеллектуальной и производственной базе. опубликовано

Водоросли являются одним из самых быстрорастущих растений на Земле. Их вес удваивается за сутки, а для роста требуется ресурсы, которых на Земле очень много: солнечный свет, вода и диоксид углерода. По своим энергетическим свойствам водоросли превосходят многие другие источники для производства биотоплива. Произрастание водорослей является управляемым и неприхотливым для человека процессом. Более того, водоросли за счет биосинтеза поглощают углекислый газ из атмосферы.

Основная проблема, которая в настоящее время затрудняет развитие промышленного производства водорослей, заключается в том, что водоросли очень чувствительны к перепадам температуры воды, которая вследствие этого должна поддерживаться в строго определенном диапазоне (резкие суточные колебания не допустимы). Так же промышленное производство водорослей затрудняется отсутствием эффективных способов сбора водорослей. Описанные выше трудности привели ученых к выводу о целесообразности выращивания водорослей только в закрытых и технологически удобных водоемах. Департамент Энергетики США исследовал водоросли с высоким содержанием масла. Исследователи пришли к выводу, что Калифорния, Гаваи и Нью-Мексико пригодны для промышленного производства водорослей в открытых прудах. В течение 6 лет водоросли выращивались в прудах площадью 1000 кв. метров. Урожайность составила более 50 грамм водорослей с 1 квадратного метра в день. Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросное тепло ТЭЦ способно покрыть до 77 % потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого пустынного климата.

В настоящее время налажено серийное производство микроводорослей, пригодных к немедленной эксплуатации, в специальных биореакторах, в которых водоросли размножаются путем деления.

Корпорация «Chevron», один из мировых энергетических гигантов, начала исследование возможности использования водорослей в качестве источника энергии для транспорта, в частности, для реактивных самолетов. Компания «Honeywell, UOP» недавно начала проект по производству военного реактивного топлива из водорослевых и растительных масел. Компания «Green Star Products» завершила вторую фазу испытаний демонстрационного завода по производству биодизеля из водорослей. Во время второй фазы выбирались оптимальные условия для выращивания водорослей. Крупная энергетическая компания Японии «Tokyo Gas Co» намерена построить демонстрационный завод, на котором из морских водорослей будут получать электричество. Для работы газовых генераторов на станции будет использоваться метан, выделяемый из мелко изрубленных водорослей. Для ряда японских префектур загрязнение побережья водорослями остается серьезной экологической проблемой. Они нередко выделяют при гниении зловонный запах и портят пейзаж. Между тем новейшая разработка японских специалистов предлагает решить эту проблему с экономической выгодой. Экспериментальная модель завода с газовым электрогенератором, которая уже работает в лаборатории несколько лет, позволяет в день перерабатывать до 1 тонны водорослей. При этом вырабатывается около 9,8 киловатт электроэнергии. Эта пилотная установка позволяет получать около 20–30 куб метров метана в месяц - этого объема достаточно, чтобы ровно на половину сократить месячный расход на электричество средней семьи.

Авиационная промышленность также заявила о начале разработок по использованию морских водорослей, в качестве сырья для производства авиационного топлива. Компания Боинг сообщила, что альтернативой биодизелю, произведенному из морских водорослей, в будущем может стать производство авиационного биотоплива. Согласно документу, никакое биотопливо, которое сегодня производится, не может быть использовано в качестве авиационного топлива. Этанол поглощает воду и разъедает двигатель и топливный провод, в то время как биодизель замерзает при низких температурах (на крейсерской высоте). Кроме того, биотопливо обладает более низкой термической стабильностью, чем обычное реактивное топливо. Специалисты Боинга считают, что оптимальным сырьем для производства биотоплива станут морские водоросли, из которых получают почти в 300 раз больше масла, чем из сои. По мнению компании Боинг, биотопливо из водорослей - это будущее для авиации. Так, если бы весь флот авиалиний мира по состоянию на 2004 год использовал 100% биотопливо, полученное из морских водорослей, понадобилась бы 322 млрд. литров масла. Для выращивания этих водорослей необходима земля площадью 3,4 млн. га. В расчете принято, что с одного гектара получается 6 500 литров ежегодно. Для этих целей, возможно, использовать земли, которые не пригодны для выращивания пищевых сельхозкультур.